ALAS HELDE JEEP HELE

张杰(高能所),张雷(南京大学

第四届半导体辐射探测器研讨会 山东青岛,2024-05-24

INTRODUCTION

- High Granularity Timing Detector (HGTD)
 - Silicon detector with coarse spatial resolution but precise timing
 - ~3.6 million 1.3×1.3 mm² pixels with Low-Gain Avalanche Detector (LGAD) technology
 - Report by Mei Zhao tomorrow
 - 6.1 m² active area
- Pileup rejection
 - Time resolution at the start (end): 30 (50) ps per track / 35 (70) ps per hit
- Luminosity measurement
 - Count number of hits at 40 MHz (bunch-by-bunch)
 - Goal for HL-LHC: 1% luminosity uncertainty
- Detector structure
 - Two end-caps
 - $z \approx \pm 3.5$ m from the nominal interaction point
 - 110 < r < 1000 mm
 - Active detector region: $2.4 < |\eta| < 4.0$
 - Each end-cap
 - Two instrumented disks, rotated by 15°

ON-DETECTOR READOUT ELECTRONICS

 The front-end modules are connected via flex tails, arranged in rows

- PEB @ 660 < r < 920 mm
- Six types of PEB to be designed (front and back side)
 - Board 1F, 2F, 1B and 2B can be used both on front and back
 - According to the optimization of mirror structure for module layout
 - Each board covers three or more readout rows in order to have a similar number of modules

OVERVIEW OF HGTD READOUT ELECTRONICS

- On-detector
 - Front-end modules
 - Flex tail cables
 - Peripheral Electronics Boards (PEB)
- Off-detector
 - Data Acquisition System (DAQ)
 - Luminosity System
 - Timing, Trigger and Control (TTC)
 - Detector Control System (DCS)
 - Low Voltage (LV)/High Voltage (HV) system
 - Interlock system

Basic functions of PEB

- Control, monitoring & data aggregation and transmission
- Power-supply distribution: LV & HV
- Thermistor connection between the front-end modules and the interlock system

HGTD electronics architecture

CHALLENGES TO ON-DETECTOR ELECTRONICS

Basic functions of PEB

- Control, monitoring & data aggregation and transmission
 - 8032 front-end modules
 - Clock and fast command distribution
 - Up to 50k analog monitoring
 - TOT/TOA data, up to 10 Tbps to TDAQ, on average, 63 Gbps per PEB
- LV & HV power-supply distribution
 - Low noise, heat dissipation, system level shielding and grounding considerations
- Thermistor connection between the front-end modules and the interlock system
 - 896 Negative Temperature Coefficient (NTC) sensors to monitor disk temperature
- Area and height restrictions
 - Limited surface area for connectors, chips and power blocks
 - Height < 10 mm, hard to find low-profile air-core inductors and connectors

Radiation tolerance for PEB

	From simulation	Safety factor	Design requirement
Si 1 MeV neutron equivalent	$< 1.4 \text{ x } 10^{15} \text{ neq} / \text{cm}^2$	1.5 x 1.3	$2.73 \ge 10^{15} \text{ neq} / \text{cm}^2$
Fluence of hadrons > 20 MeV	$< 0.32 \text{ x} 10^{15} \text{ neq} / \text{cm}^2$	1.5 x 1.3 x 2	$1.25 \ x \ 10^{15} \ neq \ /cm^2$
TID	< 36 Mrad (0.36 MGy)	1.5	54 Mrad (0.54 MGy)

- Magnetic field
 - Åmplitude: 0.382 T ~ 0.433 T
 - Angle 23.1° ~ 32.3°
- Operating Temperature:
 - On disk (with front-end modules and CO2 cooling): -35 $^\circ\!\mathrm{C}$ ± 5 $^\circ\!\mathrm{C}$
 - Testing/debugging (with cooling): -40 $^\circ C$ to 55 $^\circ C$

Top view of PEB 1F

PEB 1F DESIGN

Peripheral board	Modules	lpGBT	bPOL12v	MUX	VTRx+
1F	55	9+3	52	9	9

Key dimensions

- Total thickness: 9.7 mm
 - Shielding case: 5.0 mm
 - PCB: 2.5 mm
 - Spacer: 2.0 mm
 - Others: 0.1~0.2 mm

55 FPC connectors

- Center to center distance: 6.5 mm
- 52 bPOL12v power blocks
 - Size: 24 mm x 14.5 mm
 - Height above PCB: 5 mm
 - Height under PCB: 2 mm
 - Other shapes: derived from this board, sharing library files, stack-up, and design specifications

-

Top view

Complex PCB for PEB 1F

- High speed, low loss multi-layer material
 - Impedance control
- Halogen free
 - EM-890 or IT-170/988 or TU-883A
- Symbols and nets
 - 3386 components, 12996 connections
- 22 layers, includes:
 - 8 layers for signals
 - 2 layer for HV and HV return ground
 - 4 layers for ground
 - 8 layers for power
- HDI (High Density Interconnector)
 - Micro via

 VIPPO / POFV: Via-in-Pad Plated Over PCB

🛃 Status	- 🗆 X	
Status		
Sumbole and note		
Unplaced symbols: 0/3386	0%	
Unrouted nets: 0/3702	0%	
Unrouted connections: 0/12996	0%	
Shapes		
Isolated shapes: 0		
Unassigned shapes: 0		
Out of date shapes: 0/397	Update to Smooth	
Dynamic fill: 💿 Smooth 🔿 Roug	gh 🔿 Disabled	
DRCs		
DRC errors: Up To Date 0	Update DRC	
Shorting errors: 0	🛛 On-line DRC	
Waived DRC errors: 0		
Waived shorting errors: 0		
Statistics		
Last saved by: palzh		
Editing time: 947 hours 3 minutes	Reset	
OK Refresh	Help]

PEB 1F-PROTOTYPE FABRICATION AND PRE-QUALIFICATION

- Highly qualified vendor to be chosen for the PCB fabrication and assembly.
 - The qualification process includes participation of the candidate vendors in the PEB prototype, and evaluation of the quality of the delivered product
 - 4 companies joined PEB 1F prototype fabrication by Nanjing University

Vendor	2022 annual revenue in China (*)	PCB Material	Start date	Finish date	Fabrication time	Assembly:CommentTo verify the PCB and save the chips, only on board is assembled		PCB and save the chips, only one group of each embled
8.2-D	In top20	IT-170	Sep. 27 th	Nov.	54 days	Failed to merge the sandwich in the first batch, alignment problem;	l group	Finished at Nov. 29 th , 2023
			21	20		The second batch is OK	-	-
82 C	In top 100	EM 800K	Sep.	Dec.	80 dawa	Failed in the first batch;	l group	Finished at Dec. 21 st , 2023
0.2-0	III top 100	LIVI-000IX	15 th	13 th	00 days	The second batch is OK	-	-
						l group	Finished at Jan. 2 nd , 2024	
8.2-B	In top5	EM-890K	Nov. 10 th	Dec. 19 th	<mark>39 days</mark>	High quality, promised fabrication time	Full assembly	2 pcs finished at Jan. 15 th , 2024 One kept in IHEP One sent to CERN at Jan. 22 th , 2024 The third one under assemble for reliability testing
0.0 5	ma inna n		Nov.	Dec.	00 4	High quality, very fast, but need	l group	Finished at Dec. 27 th , 2023
0.2-E	Talwan	10-883A	28 th	18 th	20 days	international transport	-	-

*Note: https://www.eet-china.com/mp/a133351.html

Photos of PEB 1F from four manufactures

PEB 1F-PRE-QUALIFICATION

- Eye Diagram Test for 10Gbps
 - Setup
 - Use FELIX to provide down link data for lpGBT clock recovery
 - Use UPL to configure the pre-emphasis parameters of lpGBT
 - Use PC to configure Oscilloscope and record eye diagram parameters and waveforms.
 - Follow the steps below for scanning.

USB UPL +i2c PEB Uplink(10G) Adapter Oscilloscope 20G

Test result

- Eye height: 8.2-B, 8.2-C are better than 8.2-D, 8.2-E
- Eye width: 8.2-B > 8.2-C > 8.2-E > 8.2-D
- The result is consistent with the materials used by each vendor
- We plan to use 8.2-B as the qualified vendor
 - One of the "official" vendors from CERN,

TESTS IN DEMONSTRATOR SYSTEM

- FEB 1F prototype undergoes an integration test.
 - Including 54 real modules (about 0.7% of the full system), as well as the associated components (interlock, DCS, TDAQ, cooling system, support unit, cabling, etc.) are assembled and tested.

HV, LV, Cooling plate prototype Electronics : PEB 1F + flex tails + <mark>54</mark> modules mounted on <mark>4</mark> support units (detector unit)

Noise levels were measured with 42 modules in room T, and no major problem was found

CONCLUSION AND OUTLOOK

- PEB 1F prototype finished production
- Focus on the module evaluation in full demonstrator
 - Electronics : 54 modules mounted on
 4 support units + flex tails + PEB 1F + LV + HV
 - Cooling plate prototype
 - TDAQ + Lumi. DAQ + DCS
- Moving towards to the FDR phase

Many challenges ahead, but remarkable technical progress achieved

Many challenges ahead, but remarkable technical progress achieved

PHOTOS

PHOTOS

Side view

PEB 1F-PROTOTYPE PRODUCTION

		8.2-D	-	8.2-B/C	8.2-E
		IT-170	IT-988	EM-890K	TU-883A
	lGHz	4	3.21	2.93	3.91
Dk,	2GHz	3.9	3.21	2.89	
dielectric	5GHz	3.9	3.21	2.88	3.9
constant	10GHz	3.8	3.21	2.84	3.89
	20GHz		3.21	2.81	3.86
	lGHz	0.006	0.0014	0.0018	0.0024
	2GHz	0.0063	0.0014	0.0021	
Df, loss factor	5GHz	0.0075	0.0014	0.0022	0.0031
	10GHz	0.008	0.0014	0.0024	0.004
	20GHz		0.0015	0.0025	0.0044

CONCEPTUAL DESIGN OF PEB

- Two IV channels
 - Each up to 12A @ 12V
- Up to 3 modules share two bPOL12v
 - One for analog power, the other for digital power
- One TDAQ lpGBT and 1~2 luminosity lpGBTs share one VTRx+
- Control
 - I2C of lpGBT
 - Module and VTRx+ configuration
 - I2C0 of TDAQ lpGBT is connected to the VTRx+ only
 - Output
 - Module reset
 - Module power on/off
 - MUX64 channel selection
- Monitoring
 - ADC of lpGBT
 - Module state monitoring
 - VDDA, VDDD, GNDA, PROBE0/1 (internal state and temperature), NTC

pGBT:

- PEB state monitoring •
 - lpGBT voltage, temperature
 - VTRx+ RSSI(average optical power of the received light) and NTC
 - bPOL12v temperature
 - On board NTC
- Input of lpGBT
 - bPOL12v power good signal

Each lpGBT has a 8 channel multiplexed ADC. With ~7 modules/lpGBT, an external 64-to-1 MUX is required: MUX64 15

Bi-directional slow control and

the IC and EC channels.

monitoring communication between

the FELIX and the lpGBT is done via

voltages for the ALTIROCs

LPGBT FLINK ASSIGNMENT IN HGTD

Model ID	lpGBT Elinks	Mix230	Mix150	Mix310	Mix046(with lumi)	Mix00D(with 2 lumi)
M 0	ECLKO, EDINOO, EDIN10, EDOUTOO	1280, P0, I2C1	1280, P0, I2C1	1280, P0, I2C1	640, P0, I2C1	320, P0, I2C1
M1	ECLK1, EDIN01, EDIN11, EDOUT01	-	-	-	-	320, P0, I2C1, L640
M2	ECLK2, EDIN02, EDIN12, EDOUT02	-	-	-	640, P0, I2C1	320, P1, I2C2, L640
M 3	ECLK3, EDIN03, EDIN13, EDOUT03	-	-	-	-	320, P1, I2C2, L640
M 4	ECLK4, EDIN20, EDIN30, EDOUT10	1280, P0, I2C1	640, P0, I2C1	1280, P0, I2C1	640, P1, I2C2	320, P2, L_I2C0, L640
M 5	ECLK5, EDIN21, EDIN31, EDOUT11	-	-	-	-	320, P2, L_I2C0, L640
M 6	ECLK6, EDIN22, EDIN32, EDOUT12	-	640, P0, I2C1	-	640, P1, I2C2, L640	320, P2, L_I2C0, L640
M 7	ECLK7, EDIN23, EDIN33, EDOUT13	-	-	-	-	320, P3, L_I2C1, L640
M 8	ECLK8, EDIN40, EDIN50, EDOUT20	640, P1, I2C2	640, P1, I2C2	1280, P0, I2C1	320, P2, L_I2C1, L640	320, P3, L_I2C1, L640
M 9	ECLK9, EDIN41, EDIN51, EDOUT21	-	-	-	320, P2, L_I2C1, L640	320, P3, L_I2C1, L640
M10	ECLK10, EDIN42, EDIN52, EDOUT22	640, P1, I2C2	640, P1, I2C2	-	320, P2, L_I2C1, L640	320, P4, L_I2C2, L640
M11	ECLK11, EDIN43, EDIN53, EDOUT23	-	-	-	320, P3 L_I2C2, L640	320, P4, L_I2C2, L640
M12	ECLK12, EDIN60, EDIN62, EDOUT30	640, P1, I2C2	640, P1, I2C2	640, P1, I2C2	320, P3 L_I2C2, L640	320, P4, L_I2C2, L640
M13	ECLK13, EDIN61, EDIN63, EDOUT31	-	-	-	320, P3 L_I2C2, L640	-

Basic patterns used in PEB, Mix XYZ

- X: number of module run 1.28 Gbps,
- Y: number of module run 640 Mbps,
- Z: number of module run 320 Mbps

GROUNDING & SHIFLDING

- Single point connection
 - The hermetic vessel acts as the Faraday cage, which is referenced to the experiment ground by a single dedicated copper braid per end cap.
- Each PEB will have be referenced to the Faraday cage by one single low ohmic strap to the conductive layer of the outer ring.
 - The modules and the PEB shall have thermal conductive connection to the cooling plate but be electrically isolated from the cooling plate.
- The stage2 LV supplies are referenced to ground by their return lines being connected to the ground planes of the PEB which they supply.
- The HV at each module is then referenced to ground through the analog ground plane at the module end.

PEB 1F ROUTING

VOLTAGE DROP SIMULATION FOR PEB PLAN

Simulation result

 \succ Less than 12 m Ω

Resistance of the GND power planes for 55 FPC connectors

T a

ERIMEN

19

Voltage/V

PEB 1F-TEST MATRIX

Items		One group 8.2-D	One group 8.2-C	One group 8.2-B	One group 8.2-E	Full assembly 8.2-B At CERN	Full assembly 8.2-B At IHEP	Full assembly 8.2-B Wait assemble	Note	
	Power on/off, vo	oltage check	Done	Done	Done	Done	Done	Done	On hold	
		lpGBT & modules	Done	Done	Done	Done	Done	Done	On hold	Up/Down link bit error rate <mark>< 10⁻¹²</mark>
	on test	lpGBT & FELIX	Done	Done	Done	Done	Done	Done	On hold	
		MUX64 and ADC	Done	Done	Done	Done	Done	Done	On hold	
PEB self-testing	TDR (Time Dom	ain Reflectometry)	Done	Done	Done	Done	-	-	-	
	Clock jitter and skew test		Done	-	-	-	Done	Done	On hold	Total jitter < 10 ps (including FELIX, PEB, flex-tails and module flex), Clk and fastcmd skew < 0.5 ns for 320 MHz clock, < 0.7 ns for 640 MHz clock, satisfying ALTIROC specification
	Eye-Diagram test for optical links		Done	Done	Done	Done	In progress	Done	-	Bit error rate < 10 ⁻¹²
Operating	Full power test with thermal emulators and flex tails		Done	Done	Done	Done	On hold	In progress	On hold	
condition test	Performance test at low temperature		-	-	-	-	On hold	On hold	On hold	
	With front-end modules	Front-end module config	Done	Done	Done	Done	Done	Done	On hold	
Ioint test		Data taking (ALTIROC2)	Done	Done	Done	Done	Done	Done	-	
,		Data taking (ALTIROC3)	-	-	-	-	In progress	Done	On hold	
	And with HV	Noise analysis	-	-	-	-	In progress	In progress	On hold	
Calibration	DSC Monitoring measurement		-	-	-	-	On hold	On hold	On hold	
	TDC Calibration	TDC Calibration		-	-	-	On hold	On hold	On hold	
Reliability test	High Temperatu (HTOL)	re Operating Life	-	-	-	-	-	-	Plan	21
	Temperature Cycling (TC)		_	_	_	_	_	-	Plan	

ASSEMBLE WITH FLEXES

Prototype with the thermal emulators

Side view from module side

Side view from PEB side

 Confirmed that the fpc connectors with 6.5mm spacing is operable and feasible for flex installation 22