MPGD 读出类型调研与分类

赵 雷

中国科学技术大学 核探测与核电子学国家重点实验室

2018年8月6日

本文档中对国内外微结构气体探测器(MPGD)读出类型的 ASIC 进行了一些调研,并根据其功能特征大致进行了分类。

MPGD 输出信号幅度相对较小,一般需要进行高精度的电荷测量,随着物理实验及探测技术的发展,后来进一步增加了时间测量的需求,此外,对于基于 MPGD 读出的 TPC 探测器而言,考虑到其波形存在较大的离散性,还存在一种基于波形数字化技术的读出 ASIC。相应的本文档将此类型芯片分为三大类:

- 1) 仅进行电荷测量的 ASIC
- 2) 同时实现电荷和时间测量的 ASIC
- 3) 基于波形数字化技术的 ASIC

下面分别列出每一种分类中调研的芯片的名称、主要参数,并以其中一款芯片作为代表简述基本的技术路线。

名称	通 道 数	成形时间 (ns)	噪声	动态范围 (fC)	功耗 mW/ch	事例 率 (Hz)	时间 精度	应用实验	探测器类型	研制 时间	研制单位	技术路线	工艺
VA140	64	6500	100e+7e/pF	-200~200	0.29		No	DAMPE, CSES	Silicon Strip, MPGD		IDEAS	Shape, S&H, analog mux out	350 nm CMOS
VATA160	32	100 (fast) 1800~2300(low)	2140e+30e/pF	13000	5.7	1k	No	DAMPE BGO	PMT, MPGD	2013	IDEAS	Analog peak detection, mux out, trigger-or out	AMS 350 nm CMOS
CASAGEM	16	20-100 ns	<2000e@50pF(Anode) <3000e@100pF(Dynode)	0~1000	11		no	nTPC	MPGD	2012	Tsing Hua University	CSA+shaping	350 nm CMOS
SAMPA	32	160, 300ns	1600e @ 80 pF	100 fC for TPC	15	50K	no	TPC and MCH at ALICE	GEM, MWPC	2016	USP et al.	Shape, ADC + DSP	TSMC 130 nm CMOS

一、仅进行电荷测量的 ASIC

		500 fC for					
		MCH					

典型芯片:VATA160

图 1 VATA160 电路结构及版图

图 1 显示了 VATA160 电路结构及版图。输入信号经过电荷灵敏放大器(CSA)和滤波电路后送入模拟寻峰电路,得到与输入信号电荷量成正比的电压值, 并存储在采样单元中,多个通道的存储单元通过模拟的多路选择器,并经单端转差分 buffer 输出到片外通过一路 ADC 进行量化。 前放输出信号同时会被送入甄别器中,来产生峰值过阈的触发信号并做或逻辑,此信号可用作触发 hit 信号、采样或读出。

VA140、CASAGEM 使用相同的电荷测量和输出的结构。SAMPA 则在输出端集成了 ADC 内部数字化的电路。

二、同时实现电荷和时间测量的 ASIC

此类型 ASIC 可以同时实现电荷及时间的测量。从读出模式上,又可以分为模拟读出型和数字读出型两大类。在数字读出型 ASIC 中,因为片内集成了数字化电路,可以简化系统电子学的复杂度,也是此领域 ASIC 发展的一个趋势。

(1) 模拟读出型 ASIC:

	通	形时间		动态	市耗	事例				研生山		技术路线	工艺
名称	道 数	(ns)	噪声	范围 (fC)	mW/ch	率 (Hz)	时间精度	应用实验	探测器类型	时间	研制单位		

GASTONE64	64	80~150	800e+40e/pF	200	6	30k	Not presented	Cylindrical GEM in KLOE-2 at DAФNE	GEM	2010	INFN	Shape, compare, monostable out	AMS 350 nm CMOS
SFE16	16	100	490+18.7e/pF	400	17	400k	~14 n	Small Angel Tracker of COMPASS at CERN	Micromegas	2000	CEA DSM DAPNIA	Shape, TOT	AMS BiCMOS 0.8 um
GASTONE64	64	80~150	800e+40e/pF	200	6	30k	Not presented	Cylindrical GEM in KLOE-2 at DAΦNE	GEM	2010	INFN	Shape, compare, monostable out	AMS 350 nm CMOS
N-XYTER	128	18.5(fast) 140(slow)	1000e@30pF	20	13.5	32M	<3 n	EU FP-6 NMI3	Silicon strip	2006	INFM, AGHUST, HMIB, Uni Heidelburg	Shaper, analog peak detection, time stamp	AMS 350 nm CMOS
EXYT	64			1500 pC	5	>10k	CRT=363 ps	PET, TOF-PET	SSPM	2016	Tsing Hua University	Resistor network out	t 180 nm CMOS
GEMROC2	64	60,100		500	1.5	1M	~6 n	PRR (Proton Range Radiography) system	GEM	2017	AGH UST	Analog peak detection, Time stamp	350 nm CMOS
GEMROC	32	60(fast) 100(slow)	2871e@60pF(T) 2684e@60pF(Q)	500		1M	~6 n	PRR system	GEM	2011	AGH UST	Analog peak detection, Time stamp	350 nm CMOS
VMM1	64	25~200	5000e@200pF	2000	4.5		<1ns	NSW ATLAS	Micromegas, sTGC	2012	BNL	TOT, analog peak detection	IBM 130 nm CMOS

(2) 数字读出型 ASIC:

名称	通道数	成形时间 (ns)	噪声	动态范 围 (fC)	功耗 mW/ch	事例 率 (Hz)	时间 精度	应用实验	探测器类型	研制 时间	研制单位	技术路线	工艺
VMM3	64	25-200	2000e @0.5mv/fc, cd=10pF; 200e@16mv/fC, cd=10pF	2000	10	1k	< 1ns	NSW ATLAS	Micromegas, sTGC	2016	BNL	TOT, analog peak detection, ADC	IBM 130 nm CMOS

VMM2	64	25~200	5000e@200pF	2000	6.5		<1ns	NSW ATLAS	Micromegas, sTGC	2014	BNL	TOT, analog peak detection, ADC	IBM 130 nm CMOS
Tiger	64	60(fast),170(slow)	1529e+10.8e/fc	1-50	10	100k	<5ns	CGEM in BESIII	GEM	2016	INFN	Analog peak detection +Wilkinson ADC, Or TOT + TDC out, TDC time out	UMC 110 nm CMOS
SKIROC2	64	50~100ns(fast)		2fC- 8pC	27μw (Power Pulsing)			ECAL at ILC	Silicon diodes	2011	OMEGA	Trigger OR, SCA+Wilkinson ADC, TDC	AMS 350 nm CMOS
SKIROC2_CMS	64	10-70 ns	1100e+32e/pF	(1~3 fc) - 10 pc	10		50 ps	HGCAL at CMS	Silicon diodes	2016	OMEGA	Dual gain, SCA+ Wilkinson ADC, TOT(large signal) + TOA + ADC	AMS 350 nm CMOS
PASTA	64	no	600 e @ 30 pF	1-35 fc	4	100 K	50 ps	MVD at PANDA	Silicon Strip	2016	JLUG, FJG, INFN	TOT + TDC + TAC + ADC	110 nm CMOS

典型芯片:VMM3

图 2 VMM3 电路结构示意图及晶核照片

电荷测量结构:电荷灵敏放大器(CSA) + 成形电路 + 模拟寻峰 + ADC + 多路选择器输出 时间测量结构: CSA + 成形电路 + 甄别器 + TAC + ADC

信号通过电荷灵敏放大器,经过滤波电路,送入模拟寻峰电路和时间甄别电路,模拟寻峰峰值经 10 bit ADC 量化后输出,时间甄别电路为 TAC 结构将甄别 时间转化为电压,并经一个 8 bit ADC 量化。量化后的电荷信息和时间信息存在 FIFO 中,供片外读出。VMM3 有多种工作模式,也可选择将模拟信号输出,使 用片外 ADC 量化。

此类调研芯片中,大多数均采用电荷灵敏前放,滤波电路加模拟寻峰方式进行电荷测量,使用多路选择器模拟输出或是在芯片内部进行数字化。时间甄别大 多使用甄别器转换为数字电平信号直接输出,或在片内使用 TDC / TAC+ADC 的方式进行量化后输出。部分芯片采用在滤波电路后连接甄别器,基于 TOT 技术 输出信号脉宽含有电荷信息,配合 TDC 实现数字化。

三、基于波形数字化技术的 ASIC

6

-													
名称	通道数	成形时间 (ns)	噪声	动态 范围 (fC)	功耗 mW/ch	事例 率 (Hz)	时间精度	应用实验	探测器类型	研制 时间	研制单位	技术路线	工艺
AGET	64	50~1000	550+10e/pF	10000	10	1k	60 ps	Generic Electronic system for TPC	TPC	2011	CEA DSM IRFU	waveform in SCA mux readout, Disc analog OR readout	AMS 350 nm CMOS
AFTER	72	100~2000	(350~1800) + (22~10) e/pF	600	7.5	0.3 (req)	No	ND280 in T2K	Micromegas	2006	CEA DSM IRFU	waveform in SCA mux readout	AMS 350 nm CMOS
Beetle	128	25	497e+48.3e/pF	17.5	5.2	40M	No	Silicon tracker of LHCb at LHC	Silicon Strip	2003	Max-Planck Ins.	Analog pipeline readout	250 nm CMOS
HELIX128- 2	128+1	35-225	571e+52e/pF		2	10.4M	No	HERA-B Silicon Vertex Detector and MSGCs, ZEUS, HERMES	Silicon vertex, MSGC	2000	University Heidelburg	Pipeline SCA, Mux out	AMS CYE 0.8 um CMOS
APV25	128	50	246+36e/pF	-8~20	2		No	Silicon microstrip detectors in CMS tracker	Silicon microstrip	2000	Rutherford Appleton Lab, Imperial College, CERN, INFN	Shape, analog pipeline(SCA), MUX out	250 nm CMOS
SVX4	128	100~360	410+40e/pF	60	3	7.5M	No	CDF and D0 detector at Fermilab	Silicon Strip	2002	LBNL, Fermilab	CSA, SCA for each channel, Wilkinson ADC readout	TSMC 250 nm CMOS

典型芯片 AGET:

图 3 AGET 电路结构示意图及晶核照片

AGET 芯片针对 TPC 进行设计。每个芯片包含 64 个通道。信号进入电荷灵敏放大器(CSA)后,经由极零相消和 RC² Sallen-Key 滤波器进行成形后分为两路,一路送入模拟存储阵列进行波形采样,另一路送入甄别器产生触发脉冲信号。模拟存储阵列由一个 512 深度的开关电容阵列(SCA)组成,采样频率可以设置为 1~100MHz。SCA 中存储的模拟电压经由多路选择器后接输出 Buffer,送入片外的 ADC 进行量化。

AFTER、APV25、HELIX128-2、Beetle、SVX4 的电荷测量电路和与 AGET 基本相同,在前放、滤波器结构和 SCA 深度上有所不同。SVX4 在片内集成了 ADC 量化 后输出。此类结构芯片因为使用 SCA 实现波形采样,适用于探测器波形分布变化较大的场合,相对于前两种,其电路复杂度较高。

上述三大类 ASIC 对 MPGD 读出中使用的典型芯片进行了归类,目前的趋势应该是 ASIC 内同时包含时间及电荷测量功能,能够在片内完成数字化。