

Detectors

Particle Physics

Toni Baroncelli Haiping Peng

Content (and Disclaimer)

This lecture will give an overview of how to assemble detectors into experiments at Colliders.

- Experiments of the recent past and
- present experiments

Experiment: assembly of detectors

Goal of Ideal experiments: measure

- Characteristics of *ALL* charged and neutral articles
- Characteristics of a full Event (topology & much more)

This cannot be done by a single detector

- \rightarrow integrate several detectors
- \rightarrow experiments

Designing a 4π Collider Experiment

barrel

endcap

endcap

the end-cap (forward / backward part), it consists of disks that are perpendicular to the beam line.

The experiment $(==$ assembly of many detectors) 'should':

- *Be capable of measuring known physics processes but also unexpected new physics*;
- Be as hermetic as possible;
- Measure momentum of all charged particles \rightarrow B field
- Measure energy of all hadrons and electrons;
- Filter muons using a large amount of material and measure its momentum;

• Be capable of identifying particles (mass and charge)

the barrel (large angle / large p_T / large η)

cylindrical and co-axial with the beam axis

- Reconstruct primary and secondary vertices
- Have excellent triggering performance and sustain the rate of interactions;
- The position of all the different detectors should be known with high accuracy.

Is this possible at all? Yes but with caveats and limitations.

Choosing a B -Field Configuration

solenoid

 \overline{B}

B

magnet coil

toroid

N_{magnet}

Solenoids Vs Toroids

• Large homogenous field inside coil

• weak opposite field in return yoke

- Size limited (cost)
- rel. high material budget

- Rel. large fields over large volume
- Rel. low material budget
- non-uniform field
- complex structure

Time Laps of Physics

A modern experiment should be "capable of … unexpected new physics (generally indicated with NP)"

Time Laps of Physics - continued

A modern experiment at a collider should be "capable of measuring known physics processes but also unexpected new physics (generally indicated with NP)".

Time Laps of Technology (1990 – 2000)

Table 1. Typical detector characteristics.

Table 28.1: Typical resolutions and deadtimes of common detectors. Revised September 2009.

PDG. ~2010 edition

Comparison between typical detectors characteristics in 1990 and 2010

PDG. 1990 edition

Detectors designed $\sim 10y <$ data taking

- Detectors at the frontier of technology or (more often) detectors in R&D phase \rightarrow optimise while constructing
- Expected duration of future experiments > 30 years!
- Long term planning for *upgrade* and / or replacement of technologies (increase of luminosity, radiation damage)

And of SC Magnets used in Experiments

Radius of curvature of a charged particle in a B field $\rightarrow p$

Super-conducting magnets are used or the momentum measurement of harged tracks (curvature):

- $4 \times B \rightarrow 4 \times$ resolution in p_T
- Magnets are the largest structure of an experiment

- You may replace (part of the) detectors
- Magnets in experiments have to last for \sim 30 to 40 y

* No longer in service

**Conceptual design in future

[†] EM calorimeter is inside solenoid, so small X/X_0 is not a goal

A 4^p *Collider Experiment: the Real Life*

A 4π hermetic experiment is inaccessible, like a ship in a bottle.

Interventions at the LHC are planned since the construction and opening / intervening / closing back takes \sim 2 y and the coordinated work of a large number of engineers and technicians. The periods of stop are called 'LS', Long Shutdowns.

LS Long Shutdowns :

LS2 2019+2020 'Upgrade Phase 1' LS3 2024 \rightarrow ½ 2026 'Upgrade Phase 2' ….. COVID delays!! Expected data taking end ~ 2040

General Overview

Toni Baroncelli: Detectors

Toni Baroncelli: Detectors

General Overview

General Overview

Basic Measurements: Summary

Toni Baroncelli: Detectors

Toni Baroncelli: Detectors

Charged Particles D

Particle Data Group: https://pdg.lbl.gov/2020/reviews/contents_sports.html

Typical resolutions and deadtimes of common charged particle **Table 34.1:** detectors. Revised November 2011. a

Detector Type	Intrinsing Spatial Resolution (rms)	Time Resolution	Dead Time
Resistive plate chamber	$\lesssim 10$ mm	1 ns (50 ps^a)	
Streamer chamber	300 μ m ^b	$2 \mu s$	100 ms
Liquid argon drift [7]	\sim 175–450 μ m	$\sim 200 \text{ ns}$	$\sim 2 \ \mu s$
Scintillation tracker	\sim 100 μ m	100 ps/ n^c	10 ns
Bubble chamber	$10-150 \mu m$	1 ms	50 ms^d
Proportional chamber	50–100 μ m ^e	2 ns	$20-200$ ns
Drift chamber	$50 - 100 \mu m$	2 ns^f	$20-100$ ns
Micro-pattern gas detectors	$30 - 40 \mu m$	< 10 ns	$10-100$ ns
Silicon strip	pitch/ $(3 \text{ to } 7)^g$	few ns^h	$\lesssim 50\,\,{\rm ns}^h$
Silicon pixel	\lesssim 10 μ m	few ns^h	$\lesssim 50$ ns ^h
Emulsion	$1 \mu m$		

Complex observables need the combination of different detectors

- E_{tot} ,=Total event energy, p_{tot} = event momentum balance;
	- $(E_{CM} E_{tot})$ = energy carried by invisible particles
	- $(\vec{0} \overrightarrow{p_{tot}})$ gives the direction of invisible particles
	- Total momentum only in the transverse plane (E_{CM} is not known in hadronic colliders)
- Muons (Inner Detector + Muon Spectrometer)
- EM and Hadron calorimeters to distinguish hadrons from electrons and photons
- Associate showers with charged tracks extrapolated to the entrance of calorimeters
- showers not associated to any charged particle $(\rightarrow$ neutral EM or hadronic particle)
- Reconstruct jets

Measurement of Momentum p in a B Field

- Non-destructive measurement \rightarrow ionization energy losses (det. elements) are $\ll p$
- Tracking detectors are ~perpendicular to the trajectory of the charged track
- Multiple position measurement along the trajectory \rightarrow the curvature \rightarrow momentum

Measurement of Momentum p

Momentum is determined by measuring the radius of curvature in magnetic field $p \propto \rho$. In practice what is measured is the sagitta 's'

Toni Baroncelli: Detectors

Toni Baroncelli: Detectors

Measuring Physical Quantities

The component p_T perpendicular to the direction of B is given by $p_T(GeV/c) = 0.3 \cdot B(l) \cdot \rho(\text{ Tesla} \cdot m)$ \rightarrow 1 p_T = 1 $\rho \cdot B(l) \cdot 0.3$ $\sin \left(180 - 90 - \frac{\theta}{2}\right)$ $\left(\frac{2}{2}\right)$ = cos $\overline{\theta}$ 2 \overline{p} \overline{e} $= B \cdot \rho \rightarrow$

with units GeV, Tesla, meters. q is the charge of the particle, r is the radius of curvature and l is the position along the trajectory.

If we consider the triangle enclosed by ' $1/2$ ', ρ -s and ρ we can write the relation

$$
(\rho - s)^2 + (l/2)^2 = \rho^2
$$

\n
$$
\rho \cdot \cos\left(\frac{\theta}{2}\right) = \rho - s \to s = \rho \cdot (1 - \cos\left(\frac{\theta}{2}\right))
$$

\nfor small $\frac{\theta}{2}$ we expand $\cos\left(\frac{\theta}{2}\right) \approx 1 - \theta^2/8$
\n
$$
s = \rho \cdot (1 - \cos\left(\frac{\theta}{2}\right)) \approx \rho \cdot \theta^2/8
$$

Measurement of Momentum in B Field

- Using measurements inside the B field: Inner Detectors inside a solenoid \rightarrow circle that **best** passes through the measurement \rightarrow fit
- Using measurements done outside the magnetic field, in this case the direction of the track before and after the B field region

*Error on p*_T

for $N \geq 10$

Simplified example measurement with 3 points $x_{1,2,3}$:

$$
s = x_2 - \frac{x_1 + x_3}{2} \rightarrow \frac{\sigma(p_T)}{p_T} = \frac{\sigma(s)}{s} = \frac{\sqrt{3/2} \cdot \sigma_x}{s} = \frac{\sqrt{3/2} \cdot \sigma_x \cdot 8p_T}{0.3 \cdot B(l) \cdot l^2}
$$

 $\sigma (p_T$

 $p_{\scriptsize T}$

$$
\sqrt{3/2} = \sqrt{1^2 + 1/2^2 + 1/2^2}
$$

A more general formula has been derived for N equidistant measurements (R.L. Gluckstern, NIM 24 (1963) 381) :

The relative resolution on the measurement of p_T depends

- on the precision of the single measurement and
- linearly on p_T : it worsen with increasing momentum. This is qualitatively intuitive if one considers that the curvature becomes larger (and the sagitta smaller) when p_T increases.

 $= \frac{\sigma_{\lambda} p_T}{0.3 \cdot B(l) \cdot l^2} \cdot \sqrt{\frac{720}{N+4}}$

- On the inverse of square root of the **number N** of measurements
- On the dimension of the measurement area ℓ

Important effect: the multiple scattering.

Charged particles undergo a large number of small deflections when passing through matter

Multiple Scattering Impact on p_T

Ideal Situation

Example:

$$
p_T = 1
$$
 GeV, $\ell = 1$ m, B = 1T, N=10, σ_x = .2mm

$$
\frac{\delta p_T}{p_T} |^{det-res} = 0.5\%
$$

Assume the detector to be filled with atmospheric pressure Argon (gas), $X_0 = 110$ m

Note: calorimeters filter ALL particles but Muons !

(Muon) pT Resolution in ATLAS

More effects (in the Muon system after traversing calorimeters!):

- Alignment of detector elements
- Energy losses when a charged particle (muon) traverses material.

At a p_T of ~10 GeV the dominant contribution is ionization loss and multiple scattering At a p_T of \sim 300 GeV multiple

scattering and detector resolution are equally important

At a p_T of \sim 1 TeV detector resolution is most important effect

Energy Measurement in Calorimeters

- A destructive measurement: a large number of nuclear and/or EM processes in a dense medium.
- Showers; Shape depends on material and on particle \rightarrow identify!

• A transparent material (scintillating crystals or high density glasses emitting Cerenkov light) absorbs the energy and measure it.

- *All charged particles in a shower seen → best energy resolution.*
- Uniform response in all points.
- Costly, can be hardly segmented $(\rightarrow$ total energy, not shape).
- Used for electro-magnetic calorimeters \rightarrow electrons and photons

Sampling:

- Sampling between dense material and detectors.
- Often sandwich type structure (absorber / detector) but also fibres.
- Limited cost, segmentation.
- *However only a fraction of energy is detected → limited resolution.*

 $f_{sampling} = E_{detected}/E_{total}$ Generally used for hadrons

Toni Baroncelli: Detectors

oni Baroncelli: Detectors

Dimensions of Calorimeters

A characteristic parameter (→used material) determines the development of showers

- electrons/photons: Radiation Length (EM interactions)
- hadrons showers the Interaction Length (Hadronic interactions)

10.5

38.1

0.32

18.8

U

C

→ Hadron calorimeters much longer than EM calorimeters.

- The length of showers ~ log(primary energy)
- \rightarrow Calorimeters contain showers in large range of energies

Toni Baroncelli: Detectors

Toni Baroncelli: Detectors

The Shower Development

Calorimeters & Test Beams

A calorimeter signal S measured \propto number N of nuclear interactions \propto energy E.

$$
S = \sum nuclear\ interactions = \alpha \cdot E
$$

 α converts the calorimeter signal into energy. α has to be determined.

Energy Response

- The figure \rightarrow the response of a calorimeter to beam particles of different energies is linear
- The distribution of the signal at a given energy gives the 'resolution'.

The signal of a shower is linear with energy, the resolution decreases with energy

$$
\frac{\delta E}{E} \approx \frac{dN}{N} \approx \frac{\sqrt{N}}{N} = \frac{\text{const}}{\sqrt{E}}
$$
 Decreases with energy

In real life the resolution is subject to several effects and they have to be combined quadratically \rightarrow a more complex parametrisation is normally used:

$$
\sigma_{tot}^2 = \sigma_{stat}^2 + \sigma_{lekeage}^2 + \sigma_{electronic\ noise}^2 + \sigma_{non\ uniformities}^2
$$

$$
\frac{\sigma_{stat}}{E} = \frac{a}{\sqrt{E}} \frac{\sigma_{lekeage}}{E} = \frac{b}{\sqrt[4]{E}} \frac{\sigma_{electronic\ noise}}{E} = \frac{c}{E} \frac{\sigma_{non\ uniformities}}{E} = d
$$

Dead Material: how to Measure it?

Hadronic Secondary Interactions

Radiography of the Detector

TABLE 5 Evolution of the amount of material expected in the ATLAS and CMS trackers from 1994 to 2006

The numbers are given in fractions of radiation lengths (X/X_0) . Note that for ATLAS, the reduction in material from 1997 to 2006 at $\eta \approx 1.7$ is due to the rerouting of pixel services from an integrated barrel tracker layout with pixel services along the barrel LAr cryostat, to an independent pixel layout with pixel services routed at much lower radius and entering a patch panel outside the acceptance of the tracker (this material appears now at $\eta \approx 3$). Note also that the numbers for CMS represent almost all the material seen by particles before entering the active part of the crystal calorimeter, whereas they do not for ATLAS, in which particles see in addition the barrel LAr cryostat and the solenoid coil (amounting to approximately 2 X_0 at $\eta = 0$), or the end-cap LAr cryostat at the larger rapidities.

Toni Baroncelli: Detectors

Toni Baroncelli: Detectors

Pattern Recognition

How to find which measurements (*) (hits) make a track and have to be fitted to compute a trajectory?

(*) One possible set of track parameters:

 d_0 , z_0 , ϕ_0 , ϑ_0 , q/p (or tangent of the angles)

Complexity of Collider Experiments

ATLAS

In modern Experiments, already at the time the experiment is designed, you need to consider/know

- How different detectors contribute to the analysis of one single *feature (=characteristic)*
- How your analysis programs will solve the problem of very crowded and complex topologies
- \rightarrow it is more and more difficult to think in terms of single/isolated detectors
- \rightarrow it is more and more difficult to separate hardware and analysis programs

One Experiment = undistinguishable ensemble of many detectors and of analysis programs

How to find which measurements (*) (hits) make a track and have to be fitted to compute a trajectory?

In some cases you may arrange your detector to give you an indication \rightarrow u, v geometry

In some other cases you may have to 'score' your points

(*) One possible measurement: (impact parameter, direction and momentum) d_0 , z_0 , ϕ_0 , ϑ_0 , q/p

Basic Ideas in Pattern Recognition

Hough Transform

- Join all possible pairs of points with a line characterised by $tan(\theta)$ and x_0 .
- each pair of hits in two dimensions becomes a line;
- real track, \rightarrow many aligned points \rightarrow same tan(θ) and $x_0 \rightarrow$ peak in the 'Feature Space'.
- Wrong associations \sim flat distribution.

 \rightarrow one peak indicates one track \rightarrow look for peaks

After Pattern Recognition: Track Fitting (~Old Way)

Use the least squares principle to estimate the kinematical parameters of a particle = track fitting.

Definition of "Chi Squared":

$$
X^{2} = \sum_{i} \frac{(m_{i} - f_{p}(x_{i}))^{2}}{\sigma_{i}^{2}}
$$

 $\stackrel{\textbf{v}}{x}_t$ Physical meaning: distance between fit function and hit normalised to measurement error

- measured points $m_i \pm \sigma_i$ (at position x_i) \bullet of a track have been correctly identified in the *pattern recognition step*.
- trajectory of a particle is described by an analytic expression f_p .
	- \triangleright p is the set of parameters \rightarrow the momentum in B field is one parameter
	- $\triangleright f_p(x_i)$ is the coordinate predicted by the function (*f* might be a circle in a solenoid or a straight line)

Find the set of parameters p that minimises the X^2

Meaning: you find which is the trajectory which minimises the difference² between all measurements and trajectory

Better approach: include also multiple scattering and energy losses

$$
\chi^2 = \sum_{meas} \frac{r_{meas}^2}{\sigma_{meas}^2} + \sum_{scat} \left(\frac{\theta_{scat}^2}{\sigma_{scat}^2} + \frac{(\sin \theta_{loc})^2 \phi_{scat}^2}{\sigma_{scat}^2} \right) + \sum_{Eloss} \frac{(\Delta E - \overline{\Delta E})^2}{\sigma_{Eloss}^2}
$$

 $m_i \pm \sigma_i$

 $f_p(x_i)$

$$
r_{meas}^2 = residual^2 = (difference\ measurement - function)^2
$$

(~Modern) Pattern Recognition

In past experiments the track reconstruction consisted of two steps (possible in 'old' experiments):

- Pattern recognition
- **Track fit**

In modern track reconstruction, finding $+$ fitting a track at the same time no clear distinction between pattern finding and track fitting.

As a consequence, the full chain of pattern recognition and track fitting will be a single unit.

The ATLAS / CMS track finding / fitting currently consists of three sequences

- 1. the *main inside-out track reconstruction* (start with a seed defined by the beam spot and the innermost hits of the vertex detector)
- 2. Followed by a consecutive outside-in tracking (recover ~unused / unassigned hits)
- 3. As a third sequence, the pattern recognition for the finding of V_0 vertices, kink objects due to bremsstrahlung and their associated tracks follows

Track Fitting and Kalman Filter (~ Modern Way)

The X^2 method is not always convenient:

- 1. You need to have all points attributed to one track *before* the fit
- It is expensive in terms of computing-time: a large number of points have to be handled in the X^2 fit: # measurements $x \#$ parameters of each measurement
- 3. to be repeated for many tracks!

$$
N_{tracks} \cdot N_{hits} \cdot N_{parameters}
$$

→ use pattern recognition methods which are based on track following, where it is not clear a-priori the right hit *combination*

track following $==$ the path is not clear a-priori \rightarrow the direction becomes clearer as you follow the trajectory \rightarrow Kalman filter technique

The Kalman filter proceeds progressively from one measurement to the next, improving the knowledge about the trajectory with each new measurement.

With a traditional global fit, this would require a time consuming complete refit of the trajectory with each added measurement.

Kalman Filter in a Cartoon

Kalman Filters

Kalman Filter approach consists of two steps:

- The prediction step: extrapolate current trajectory (state vector) to next measurement from the \rightarrow discard noise signals and hits from other tracks.
- The transfer step, which updates the state vector

System state vector at the time k includes $k-1$ measurements and contains the parameters of the fitted track, given at the position of the kth hit (including hits before!) The corresponding measurement errors **covariance matrix** (*contains measurement errors*) by C_k. The matrix F_k describes the propagation of the track parameters from the $(k - 1)$ th to the kth hit.

Example: planar geometry with one dimensional measurements and straight-line tracks

$$
t_x
$$
 = tan θ_x the track slope in the xz plane,
\n F_k = transfer matrix
\n
$$
\begin{array}{ccc}\n\text{State vector} & \begin{pmatrix} x \\ \hline \omega \end{pmatrix}_k = \begin{pmatrix} 1 & z_k - z_{k-1} \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ t_x \end{pmatrix} & k-1\n\end{array}
$$
\n $\begin{array}{ccc}\n\text{State vector} & \text{State vector} \\ \hline\n\omega \text{ measurement } k-1 & \text{at } t \end{array}$ \n
$$
\rightarrow x_k = x_{k-1} + t_x \cdot (z_k - z_{k-1})
$$
\n
$$
\rightarrow t_k = t_x \omega k - 1
$$
\n $\begin{array}{ccc}\n\text{State vector} & \text{Sate vector} \\ \hline\n\end{array}$

Propagation of States

<u>The extrapolation from one state to another (in page b</u>

$$
x_k = \boxed{F_k} \cdot x_{k-1}
$$

The transfer matrix F_k transports the state x_{k-1} (at the measurement point 'k-1') to the next state x_k at [measurement point k](https://arxiv.org/abs/physics/0402039v1)

$$
Extrapolation, Fk
$$
 New state
Measurement k

Measurement k-1

Error on track parameters

 c_k is the error mat (generally called C measurements (diagonal terms) but also the correlations of the correlations of the correlations of the correla among different te

A new term appears: particle trajectory (mo \rightarrow *~ exact i*

- 1. We extrapolated the state x_{k-1} from measurement k-1 to state x_k at m
- 2. We have to include new measurement k. The formalism is a bit compl

A Kalman-Filter approach is used in modern of

(*) Pattern Recogniesperimentst Reconstruction in Particle Physics Ex

Vertices in Events Produced at LHC

The recording of one event is started by the 'trigger system' that detects 'interesting characteristics' \rightarrow primary vertex

 \rightarrow during the time window of the trigger more than one interaction takes place → Pile-up vertices *(next slide)*

Collision event:

- One primary vertex from the hard inelastic collision
- Several pile-up vertices (pp interactions, superimposed to the *triggered* primary vertex)
- Secondary vertices are produced due to
	- \checkmark Decay-chain: decays of long-lived b-particles decaying into c-particles (tertiary vertex)
	- \checkmark (V^0) Decays of neutral particles (like photon conversions into electron pairs $\gamma \rightarrow e^+e^-$)

$\langle \mu \rangle = \langle Num, of interactions in 1 bunch \rangle$

One simulated event with 88 reconstructed vertices

A visualisation of simulated $t\bar{t}$ quark pair production in a pp collision at

14 TeV HL-LHC

The simulated event includes approximately

- 200 pileup interactions in the same bunch crossing
- 88 primary vertices (blue balls) reconstructed along the beam line.

Toni Baroncelli: Detectors

Toni Baroncelli: Detectors

Vertex Finding and Fitting

EM – Calorimetry: Calibration

- p is the read-out electronic pedestal, measured in dedicated calibration runs;
- a_i weights are coefficients derived from the predicted shape of the ionisation
- The cell gain **G** is computed by injecting a known calibration signal and reconstructing the corresponding cell response. (equalise response)
- The factor $M_{\text{phys}}/M_{\text{cali}}$ quantifies the ratio of the maxima of the physical and calibration pulses corresponding to the same input current, *corrects the gain factor G obtained with the calibration pulses to adapt it to physics-induced signals*;
- The factor F_{DAC→μA} converts digital-to-analog converter (DAC) counts set on the calibration board to a current in μA;
- The factor F_{uA→MeV} converts the ionisation current to the total deposited energy at the EM scale and is determined from test-beam studies.

Calibration pulses and physical pulses are different

Hadron Calorimetry (example: ATLAS)

EM – Calorimetry: Absolute Calibration

 Z and J/Ψ decays to a pair of e^+e^- can be used to verify and adjust the calibration of EM calorimeters (but use also $W \rightarrow ev$):

Well known!
$$
m_{Z,J/\psi}^2 = (E_{e^+} + E_{e^-})^2 - (\vec{p}_{e^+} + \vec{p}_{e^-})^2 = f(E_{e^+}, E_{e^-}) \rightarrow
$$

Find the transformation (simple example: $E^{corrected} = \boldsymbol{a} \cdot E$) of the two energies that which gives the

- Correct mass of Z and J/Y
- Gives the narrowest invariant mass distribution

Use large samples of events \rightarrow (and verify if the response is constant in different η, φ regions *(Also adjust MC!)*.

Hadron Calorimeters: Absolute Calibration

In EM calorimeters decays to Z and J/Ψ to e^{\pm} to check reconstruction.

Hadron Calorimeters: two approaches are used.

Use cosmic muons: single isolated muons (from cosmic muons or Z/W decays), measure

energy deposited/path length (\sim *very large extrapolation!!)*

• Use single isolated charged hadrons, *require a signal compatible with a minimum ionizing particle in the electromagnetic calorimeter in front of the hadron calorimeter was required* (shower starts in Hadron Calorimeter) measure

energy measured/momentum of charged tracks

 \rightarrow compare data & MC \rightarrow good agreement

(Topological) Clusters in Calorimeters

Cells in calorimeters → Clusters of energy deposition

- Identify 'starting' cells (seeds) with energy measurements $E_{deposition} > 4 \cdot \sigma_{noise}$
- Associate more cells laterally and longitudinally in two steps
	- \checkmark add all adjacent cells with energy measurements $E_{deposition} > 2 \cdot \sigma_{noise}$
	- \checkmark add all adjacent cells with energy measurements $E_{deposition} > \sigma_{noise}$
- Split two local energy maxima into separate clusters

 σ_{noise} is the threshold electronic signal that indicates a significant $E_{deposition}$

Comments to Topo-Clusters

The topological clustering algorithm employed in ATLAS is not designed to separate energy deposits from different particles, but rather to separate continuous energy showers of different nature, i.e. electromagnetic and hadronic, and also to suppress noise.

Few comments:

- A large fraction of low-energy particles are unable to seed their own clusters: In the central barrel 25% of 1 GeV charged pions do not seed their own cluster.
- They are *initially calibrated to the electromagnetic scale (EM scale)* to give the same response for electromagnetic showers from electrons or photons.
- Hadronic interactions produce responses that are lower than the EM scale, by amounts depending on where the showers develop.
- To account for this, the mean ratio of the energy deposited by a particle to the momentum of the particle is determined based on the position of the particle's shower in the detector. A local cluster (LC) weighting scheme is used to calibrate hadronic clusters to the correct scale.
- \rightarrow Further development is needed to combine this with particle flow

Hadrons may deposit energy in both Electromagnetic calorimeters (ECAL) and Hadron calorimeters (HCAL).

ECAL HCAL Conversion factors $E_{deposition} \rightarrow True \; Energy$ are different for ECAL & HCAL and depend on particle type, position, true energy

 $\rightarrow E_{calibrated} = a + b(E) f(\eta) E_{ECAL} + c(E) g(\eta) E_{HCAL}$

 $\chi^2 = \sum_{i}^{N} \frac{\left(E_i^{\text{calib}} - E_i\right)^2}{\sigma^2},$

- $E_{calibrated}$ is the 'real particle energy'
- E_{ECAL} and E_{HCAL} are the energies measured in the ECAL and the **HCAL**
- a accounts for energy lost because of σ_{noise} threshold
- $b(E)$ and $c(E)$ are conversion factors
- $f(\eta)$ and $g(\eta)$ correct energy in different η regions

These parameters have to be determined from data: use

- Simulated data: true energy (MC!) is taken as $E_{calibrated}$
- Large samples of isolated charged showers: the momentum reconstruction is taken as $E_{calibrated}$

In a first pass, the functions $f(n)$ and $g(n)$ are fixed to unity.

Results: $(E_{calerated} = a + b(E) f(\eta) E_{ECAL} + c(E) g(\eta) E_{HCAL})$

Calibration coefficients vs energy E, for hadrons

- HCAL only (blue triangles),
- ECAL and HCAL, for
	- \checkmark the ECAL (red circles) and
	- \checkmark for the HCAL (green squares)

Single isolated hadrons:

- Relative raw (blue) and calibrated (red) energy response (dashed curves and triangles)
- resolution (full curves and circles)

Muon Reconstruction at LHC

Muon Reconstruction in ATLAS

Muons

- are filtered by calorimeters
- Seen in the Inner detector and in the muon spectrometer.
	- These two tracks have to be associated @ reference plane
	- The momentum has to be computed by combining the two associated tracks + account the energy lost in calorimeters

Very high energy muons (close to 1 TeV) may shower like electrons, these cases are called "catastrophic energy losses"

Different types (== different reconstructions)

- Combined: $ID + MS + full track$ refit. Main reconstruction type
- Stand-alone (SA): MS-only track with identification and reconstruction. Recovers muons for $|\eta|>2.5$
- Segment-tagged: one ID track is associated to one segment of track measured in the MS (incomplete MS track)
- CaloTag: charged track in the ID associated to an energy deposition of a minimum ionizing particle in the calorimeter. Low energy muons that do not penetrate up to the MS

Muon Reconstruction in CMS

The momentum of muons is measured both in the inner tracker and in the muon spectrometer. There are three different muon types:

- *standalone muon*. Hits in the muon spectrometer only are used to form muon segments that are combined in a track describing the muon trajectory. The result of the final fitting is called a standalone-muon track.
- *global muon*. Each standalone-muon track is matched (if possible!) to a track in the inner tracker if the parameters of the two tracks propagated onto a common surface are compatible. The hits from the inner track and from the standalone-muon track are combined and fit to form a global-muon track. At large transverse momenta, $p_T > 200$ GeV, the global-muon fit improves the momentum resolution with respect to the tracker-only fit.
- *tracker muon*. Each inner track with p_T larger than 0.5 GeV and a total momentum p in excess of 2.5 GeV is extrapolated to the muon system. If at least one muon segment matches the extrapolated track, the inner track is defined as a tracker muon track.

About 99% of the muons produced within the geometrical acceptance of the muon system are reconstructed either as a global muon or a tracker muon and very often as both. Global muons and tracker muons that share the same inner track are merged into a single candidate. Muons reconstructed only as standalone-muon tracks have worse momentum resolution and are contaminated by cosmic. Charged hadrons may be mis-reconstructed as muons if some part of the hadron shower reach the muon system (punch-through).

Combining ID + MS improves resolution always.

Effect is mostly visible at low p_T values ~ 10 GeV where a factor of two is gained in resolution

At high p_T (~1 TeV) the resolution mostly comes from the MS

Toni Baroncelli: Detectors

Toni Baroncelli: Detectors

Tag & Probe Method

Modern Experiments: Particle Flow, Basic Idea

 \rightarrow For low-energy charged particles, the momentum resolution of the tracker is significantly better than the energy resolution of the calorimeter.

Problem #1

A charged particle is measured in trackers (p_T) and in calorimeters (ECAL & HCAL) \rightarrow avoid double-counting its energy \rightarrow associate tracks and showers \rightarrow choose only one!

Problem #2

Showers are often superimposed \rightarrow subtract a part of the energy deposition

Particle Flow (~Jets): basic idea

Why Particle Flow (PF)?

Two possibilities to reconstruct the topology (*) of one event

- Use calorimeters: they are sensitive to ALL particles, charged, neutral, photons hadrons, (partly) muons. BUT the energy resolution ~not very good at ~low/medium energies
- use PF: It gives an optimal use of measurements: when you have two independent measurements of the same particle \rightarrow take the best!

Topology = general characteristics of the event, like $\#$ of jets

Particle Flow: Advantages & Disadvantages

- Particles below detection threshold;
- $\sigma_{direction}^{Tracker} \ll \sigma_{direction}^{Calorimeter}$
- Low- p_T tracks in a jet are swept out of the jet cone by the magnetic
- *→ use track's coordinates at the IP →* these particles are recovered into the jet.
- pile-up interactions: distinguish primary vertex from pile-up vertices

For each charged particle

- Ø Avoid double-counting energy (Calorimeters) & Momentum (trackers)
- Ø Cancel Edep calorimeters of charged tracks *→ only neutrals*
- \triangleright Handle one neutral h close to a charged h

Do not remove any energy deposited by neutral particles.

The Particle Flow Algorithm

Before applying PF Algorithm it is necessary to know how much energy <E_{dep}> a particle with measured momentum p_{trk} deposits on average in calorimeters. This is needed to correctly subtract the energy from the calorimeter for a particle whose track has been reconstructed. This is done using the expression

$$
\langle E_{dep} \rangle = p^{trk} \cdot \langle E_{ref}^{clus} / p_{ref}^{trk} \rangle
$$

The value $\langle E_{ref}^{clus}/p_{ref}^{trk}\rangle$ (which is also a measure of the mean response) is determined using single-particle samples without pile-up by summing the energies of topo-clusters in a R cone of size 0.4 around the track position, extrapolated to the EM calorimeter. This cone size is large enough to entirely capture the energy of the majority of particle showers. The subscript 'ref' indicates values $\langle E_{ref}^{clus}/p_{ref}^{trk} \rangle$ determined from single-pion samples.

The PF algorithm is skematically shown below

Particle Flow in One Cartoon

PF in CMS, one Event

Toni Baroncelli: Detectors

Toni Baroncelli: Detectors

Subtracting Calorimeter Cells

- Important parameter: the ratio $E_{calorimeter}/p^{trk} \rightarrow$ rings around the extrapolated track
- Remove rings if $E_{cl} > p^{trk}$

EMB2 & EMB3 two calorimeter layers

Toni Baroncelli: Detectors

Toni Baroncelli: Detectors

Particle Flow in Action: Example

- The red cells are from the π^+ ,
- the green cells energy from the photons from the π^0 decay
- the dotted lines represent the borders of the calorimeter-cluster

Jets: Introduction

Jets are a collection of 'close by' objects that reflect the initial parton \rightarrow try to reconstruct the momentum of the initial parton

Construction of jets:

- Before Particle Flow \rightarrow calorimeters
- After Particle Flow \rightarrow the best defined object between with track or calorimeter cluster

Jets (What & How?)

Iterative cone algorithms: Jet defined as energy flow within a cone of radius R in (η,φ) space:

$$
R = \sqrt{(\eta - \eta_0)^2 + (\Phi - \Phi_0)^2}
$$

- Start with most energetic energy deposition
- Define distance measure d_{ij}
- Calculate dij for all pairs of objects ...
- Combine particles with minimum dij below cut ...
- Stop if minimum dij above cut ...

Limit: all 'distances' count the same! \rightarrow weight using momentum or energy

The definition of distance is very important: the formula below if most used today. <mark>NOTE the parameter 'p' in $k_{t,i}^{2p}$.</mark>

- $k_{t,i}$ is the transverse momentum of particle i
- $\Delta_{ij}^2 = (\eta_i \eta_j)^2 + (\varphi_i \varphi_j)^2$ $d'_{ij} = distance' = \min(k_{t,i}^{2p}, k_{t,j}^{2p})$ Δ_{ij}^2 $\frac{\overline{-}ij}{R^2}$,

R² is a parameter of the algorithm \rightarrow opening of the cone

If *p*=0 you have the so-called *Cambridge/Aachen* algorithm $d_{ij} = \min(k_{t,i}^{2p}, k_{t,j}^{2p})$ Δ_{ij}^2 $\frac{d_{ij}}{R^2} \rightarrow d_{ij} =$

If $p=1$ you have the so-called K_T algorithm

$$
d_{ij} = \min(k_{t,i}^2, k_{t,j}^2) \frac{\Delta_{ij}^2}{R^2}
$$

 R^2

 $k^2_{t,i}$

 $k^2_{t,j}$

If $p=$ -1 you have the so-called *anti* K_T algorithm $d_{ij} = \min($ 1 $\frac{1}{2}$, $\frac{1}{k^2}$ $\frac{1}{2}$ Δ_{ij}^2

Cacciari et al. https://arxiv.org/pdf/0802.1189

Toni Baroncelli: Detectors

Toni Baron

$k_{\mathcal{T}}$ *and anti-k_T* Jet Algorithms'

Jet Shapes in Different Algorithms

kT jet reconstruction algorithm

Simulated events: 3 partons + large number of ghosts

In the anti-kT jet reconstruction algorithm, are all circular

Toni Baroncelli: Detectors

Toni Baroncelli: Detectors

How to Calibrate a Jet?

One CMS Example

Absolute Method Uses p_t balance in back-to-back photon+jet events

Missing Transverse Energy E_T

It is ONLY in the transverse plane that p_T is conserved (at hadron colliders) $\sum_{All\ particles} p_T = 0.$ $\sum_{All\ particles} p_l = ? (x_1, x_2 \ unknown!)$

$$
\vec{E}_T^{miss}=-\Sigma_i\vec{E}_T^i
$$

missing transverse energy $=$ minus the vector sum of the transverse energy deposits. It is a proxy of the energy carried away from undetected particles.

→ W bosons, top quark events and supersymmetric particle searches (with neutrinos or neutrinos-like particles in the decay channels).

Another important quantity that is often referred to is the total transverse energy, which is the scalar sum of the transverse energy deposits:

$$
\sum E_T = \sum_i E_T^i
$$

Missing Transverse Energy (MET)

The missing transverse energy and the total energy measurements are calculated using objects from Particle Flow

ATLAS & CMS in 2 Words

ATLAS: To reconstruct E_T^{miss} , fully calibrated electrons, muons, photons, hadronically decaying τ -leptons, and jets, reconstructed from calorimeter energy deposits, and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various E_T^{miss} contributions

CMS: The optimal response and resolution of E_T^{miss} can be obtained using a global particle-flow reconstruction. The particle-flow technique reconstructs a complete, unique list of particles (PF particles) in each event using an optimized combination of information from all CMS subdetector systems. Reconstructed and identified particles include muons, electrons (with associated bremsstrahlung photons), photons (including conversions in the tracker volume), and charged and neutral hadrons. Particle-flow jets (PF Jets) are constructed from PF particles.

Computing MET

MET & Pile-Up & Soft Terms

MET is affected by pile-up **Primary Vertex**

- Tracks can be associated to vertices
- Energy depositions in calorimeters cannot be associated to vertices

Compute the ratio Jet Vertex Fraction for each jet:

$$
JVF = \sum_{tracks, PV} p_T / \sum_{tracks} p_T
$$

How much total momentum of a jet does not come from the PV?

Remove Jets with JVF < cut

Soft Term = un-associated E_{dep} s in calorimeters

Methods developed to remove *Soft term*

E_T^{miss} Resolution in ATLAS & CMS

Study the (E_{miss)x,y} distribution for a sample of "minimum bias events" (expected to have no real E_T^{miss}).

Use events with one Z boson or an isolated γ (converting!) is present. These events are produced in collisions

- qg \rightarrow q γ ,
- $q\bar{q} \rightarrow Z$,
- $qg \rightarrow qZ$, and
- $q \bar{q} \rightarrow \gamma$.
- $E_T^{miss}\!\sim 0.$ is in these events
- remove objects from the Z, γ decay/conversion
- $E_T^{miss} \sim E_T^{Z,\gamma}$
- Compare the momenta of the well-measured boson to the E_T^{miss}

Use of Simulation in Data Analysis

The way to a cross section measurement (real life)

- Identify a measurement you are interested in (call it "signal"), understand its topology and kinematics
- Identify possible "background" processes with similar topology and kinematics (in general $N_b \gg N_s$)
- Identify a possible **selection** that produces a sample of events rich in signal and poor in background events \rightarrow Magnify your signal over background
- Apply the selection and count events

Of Monte Carlo Events in Analysis

- σ^{signal} is the cross section of the interaction you want to study
- $\mathcal L$ is the total luminosity you have collected
- N_{total}^{signal} is the number of signal events with cross section σ
- $N_{selected}$ is the number of events at the end of you analysis (signal + background!)
- $N_{background}$ is the number of background events at the end of you analysis. How to evaluate them? Later
- Data have been collected using a trigger. All triggers have inefficiencies \rightarrow trigger efficiency $\varepsilon_{trigger}$
- To improve the visibility of your signal over background you apply selection cuts → only a fraction of events survive $\varepsilon_{selection}$
- Your detector is NOT really hermetic, there are holes, cracks, non-instrumented zones \rightarrow only a fraction of events are in the sensitive region of your experiment \rightarrow Acceptance

Of Monte Carlo Events in Analysis

Of Monte Carlo Events in Analysis

good add a gaussian random number with appropriate characteristics every measurement

Data-driven Background Estimation

Define Control Regions!

Signal Region: 'optimised' kinematical region that contains your signal (selection cuts)

• Count background events in SRs as predicted by Monte Carlo: $N_{MC}^{A,SR}, N_{MC}^{B,SR}$

Control Region (CRs) : kinematical region ORTOGONAL to the signal region that

- Contains the **background** you want to measure
- Doesn't contain signal events
- Count events in CRs: both Monte Carlo and Data
	- MC simulated events: $N_{MC}^{A,CR}$, $N_{MC}^{B,CR}$
	- Data: $N_{Data}^{A,CR}, N_{Data}^{B,CR}$

 $N_{Data}^{B,SR} = N_{MC}^{B,SR} * N_{Data}^{B,CR}/N_{MC}^{B,CR}$ (Integral of distribution)

Normalise MC prediction to Data

Control Regions (2D cartoon)

- Signal Region (SR) contains events we want to select, Control Regions are close to SR but **ortogonal**. Need to have no correlation between SR&CR. You choose them to be mostly populated by the background you want to control
- SR: Lepton quality & trigger match & E_T^{miss} > 25 GeV & m $_T$ > 50 GeV & lepton isolation & Overlap Removal (OR) **Extrapolation**

Background from heavy flavours decays and (for electrons) photon conversions determined using a "data-driven" technique.

Material

CERN School 2017: Rende Steerenberg: Hadron Accelerators-1 CERN School 2017: Rende Steerenberg: Hadron Accelerators-2 The Physics of Particle Detectors M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018)

Passage of particles through matter, pages 446-460 Particle detectors at accelerators, pages 461-495

- 1. Sylvie Braibant, Paolo Giacomelli, Maurizio Spurio: Particles and Fundamental Interactions, An Introduction to Particle Physics. Springer
- 2. DetectorsTokyo.pdf
- 3. Particle-detectors.pdf
- 4. Detectors-Full.pdf

End of Detectors

Particle Physics Toni Baroncelli Haiping Peng USTC