

## $\pi^0$ –pole's contribution to HLbL in muon g-2

北京大学 林天 2024年7月9日 超级陶粲装置研讨会,兰州





#### CONTENTS

# 01 研究背景: 缪子反常磁矩之谜

02 π°-极点对强光子光子散射的贡献

缪子反常磁矩之谜



#### 2023年费米实验室最新实验





(缪子反常磁矩储存环)  $a_{\mu} \times 10^{10} - 11659000 = 205.5(2.4)$ 精度: 0.20 ppm

(Aguillard et al., 2023)

 $a_{\mu} \times 10^{10} - 11659000 = 181.0(4.3)$ 精度: 0.37 ppm

(Aoyama et al., 2020)

需要在标准模型下进行更加精确的计算!

缪子反常磁矩之谜







### 强相互作用对缪子反常磁矩的贡献





2020 白皮书:  $a_{\mu}^{HVP} = 6931(40) \times 10^{-11}$ 目标精度: 0.2%

非微扰特性使得强相互作用的计算极具挑战性

*O*(*α*<sup>3</sup>) HLbL 强光子光子散射



- $a_{\mu}^{HLbL} = 92(18) \times 10^{-11}$ 目标精度:10%
  - 色散关系
  - 格点QCD

### 强真空极化 HVP



领头阶 HVP



色散关系: • 数据驱动

实验输入

*e*+*e*-散射截面: *π*+*π*-

5

(a) V

(a) M

(b) S

(b) R

(d)  $T_d$ 

(c)  $R_d$ 

(e) D1

(d) O

(f)  $D1_d$ 

- $\tau$ 强衰变:  $\pi^{-}\pi^{0}$ •
- 2*K*,3π,4π,J/ψ 道 •
- R值测量 •

同位旋对称:

QED 修正:

强同位旋破缺:

- 格点 QCD
- 目标精度高于1%



• • •

(Blum et al., 2018)

强真空极化的格点计算





7

#### 强真空极化: windows method





强真空极化新谜题





#### 强光子-光子散射 HLbL



|                                     | HLbL =                | <sup>×</sup> <i>π</i> <sup>0</sup> ,η,η', <sup>×</sup><br>, <sup>+</sup> · · · · · · · · · · · · · · · · · · · | +                                        |  |
|-------------------------------------|-----------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------|--|
| 色散方法:<br>各个中貢<br>态的贡献<br>格点直接<br>计算 | 色散方法                  | $a_{\mu} \times 10^{11}$                                                                                       |                                          |  |
|                                     | $\pi^0,\eta,\eta'$ 极点 | $93.8 \pm 4.0$                                                                                                 |                                          |  |
|                                     | $\pi/K$ 巻             | $-16.4\pm0.2$                                                                                                  | 两种格点计算                                   |  |
|                                     | S-波 ππ                | $-8 \pm 1$                                                                                                     | <ul> <li>在色散分和</li> <li>直接计算[</li> </ul> |  |
|                                     | 轴矢粒子                  | $6\pm 6$                                                                                                       | • 且按日异凸                                  |  |
|                                     | 标量、张量粒子               | $-1 \pm 3$                                                                                                     | 目前的精度(                                   |  |
|                                     | 短程贡献                  | $15 \pm 10$                                                                                                    | 计算均给出一                                   |  |
|                                     | 粲夸克以及更重夸克             | $3 \pm 1$                                                                                                      |                                          |  |
|                                     | 总和                    | $92 \pm 19$                                                                                                    |                                          |  |
|                                     | Mainz,22              | $109.6 \pm 15.9$                                                                                               |                                          |  |
|                                     | RBC/UKQCD,23          | $124.7 \pm 15.2$                                                                                               |                                          |  |

†算方案:

分析的框架下计算: $\pi^0, \eta, \eta'$ 极点

h

+

...

π

2π态

算四点函数

度(~15%)下,色散方法和格点 出一致的结果。

## 强光子-光子散射: 格点直接计算 QED∞方案







#### CONTENTS

## 01 研究背景: 缪子反常磁矩之谜

## 02 π<sup>0</sup>-极点对强光子光子散射的贡献

- 研究方法
- 数值结果









 $\pi^0$ 转变形状因子的提取



格点输入: 
$$\mathcal{H}_{\mu\nu}(x)$$
  
 $f$   
 $i\int d^4x e^{-iq_1 \cdot x} \langle \Omega | T\{J_{\mu}(x)J_{\nu}(0)\} | \pi^0(p) \rangle \equiv \varepsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \mathcal{F}_{\pi^0\gamma^*\gamma^*}(-q_1^2, -q_2^2)$   
 $q_1 = (iE, \vec{q})$   
任意类空动量的  $\pi^0$ 转变形状因子  
 $f$ 

*E*:自由参数  $\vec{q} = \frac{2\pi}{L} \vec{n}$ :格点动量 并非所有动量取值的形状因子都可以直接计算 必须引入<mark>模型</mark>进行参数化

VMD 模型, z 展开...

无穷体积标量函 数方案  $\mathcal{F}_{\pi^{0}\gamma^{*}\gamma^{*}}(-q_{1}^{2},-q_{2}^{2}) = \frac{1}{2m_{\pi}} \int dt \, \int d^{3}x \, e^{Et} \, \frac{j_{1}(|\vec{q}||\vec{x}|)}{|\vec{q}||\vec{x}|} \, \varepsilon^{\mu\nu\alpha0} x_{\alpha} \mathcal{H}_{\mu\nu}(x)$ 

可以直接计算任意动量的形状因子

 $\pi^0$ 形状因子的计算结果

在π0静止系中



当  $Q_1^2 \neq Q_2^2$  时,权重函数中的指数因子会显著放大统计误差。 信噪比问题导致无法得到  $a_{\mu}^{\pi^0 - pole}$ 



强子函数的洛伦兹结构



强子函数  

$$\mathcal{H}_{\mu\nu}(x)$$
's 对 $p \cdot x$ 的依赖  
强子函数  
 $\mathcal{H}(x^2, p \cdot x) = \int_0^1 du \ e^{i(u-\frac{1}{2})p \cdot x} \phi_{\pi}(x^2, u) \underbrace{\mathcal{H}(x^2, 0)}_{\mu(x^2, 0)}$ 
(Bali et al., 2018)  
(Bali et al., 2018)  
 $\mathcal{H}(x^2, p \cdot x) = \int_0^1 du \ e^{i(u-\frac{1}{2})p \cdot x} \phi_{\pi}(x^2, u) \underbrace{\mathcal{H}(x^2, 0)}_{\mu(x^2, 0)}$ 
(Bali et al., 2018)  
 $\mathcal{H}(x^2, p \cdot x) = \int_0^1 du \ e^{i(u-\frac{1}{2})p \cdot x} \phi_{\pi}(x^2, u) \underbrace{\mathcal{H}(x^2, 0)}_{\mu(x^2, 0)} = \phi_{\pi}(x^2, 1-u)$   
 $\pi$  结构函数  
 $\mathcal{H}(x^2, p \cdot x) = \int_0^1 du \ \int d^4x \ e^{-ik \cdot x} \frac{(x \cdot k)p^2 - (x \cdot p)(k \cdot p)}{k^2 p^2 - (k \cdot p)^2} \phi_{\pi}(x^2, u) \mathcal{H}(x^2, 0)$ 
with  $k = q_1 - up$   
SO(4) 平均  
 $\mathcal{S}(4)$  平)  
 $\mathcal$ 

#### Gegenbauer 分解



格点输入 结构函数 解析已知  

$$a_{\mu}^{\pi^{0}-pole} = \int d^{4}x_{1} d^{4}x_{2} du_{1} du_{2} H(x_{1}^{2}, 0) H(x_{2}^{2}, 0) \phi_{\pi}(x_{1}^{2}, u_{1}) \phi_{\pi}(x_{2}^{2}, u_{2}) \rho_{sym}(x_{1}, x_{2}, u_{1}, u_{2})$$

Gegenbauer 多项式  $C_{2n}^{\frac{3}{2}}(2u-1)$  构成 [0,1] 上的正交完备基,将  $\phi_{\pi}$ ,  $\rho_{sym}$  分解为:

如何确定  $\phi_{\pi}(x^2, u)$ ?

#### 思考1:能够通过格点提取?

原则上可以,但

需要 boost 一个较大的动量

• 反问题

• 并不必要,因为 $a_{\mu}^{\pi^{0}-pole}$ 对结构函数依赖不大

思考2: 如何估计结构依赖?



#### 格点组态信息



|   | id              | $m_{\pi}({ m MeV})$ | a[fm] | $L^3 \times T$    | $m_{\pi}L$ | $N_{conf}$ |
|---|-----------------|---------------------|-------|-------------------|------------|------------|
|   | 24D             | 143                 | 0.194 | $24^3 \times 64$  | 3.3        | 253        |
|   | 32D             | 142                 | 0.194 | $32^3 \times 64$  | 4.5        | 63         |
|   | $32\mathrm{Df}$ | 143                 | 0.143 | $32^3 \times 64$  | 3.3        | 69         |
|   | 48I             | 139                 | 0.114 | $48^3 \times 96$  | 3.9        | 112        |
|   | 64I             | 135                 | 0.084 | $64^3 \times 128$ | 3.7        | 65         |
|   | 16IH2           | 431                 | 0.11  | $16^3 \times 32$  | 3.9        | 302        |
|   | $24\mathrm{DH}$ | 328                 | 0.193 | $24^3 \times 64$  | 8.1        | 37         |
|   | 24IH1           | 340                 | 0.110 | $24^3 \times 32$  | 4.6        | 77         |
|   | 24IH2           | 431                 | 0.110 | $24^3 \times 32$  | 5.8        | 76         |
|   | 24IH3           | 573                 | 0.110 | $24^3 \times 32$  | 7.7        | 27         |
| 3 | 2 I coarse H1   | 340                 | 0.110 | $32^3 \times 64$  | 6.1        | 38         |
|   | 32IfineH        | 371                 | 0.063 | $32^3 \times 64$  | 3.8        | 118        |
|   | 32IH1           | 302                 | 0.083 | $32^3 \times 64$  | 4.1        | 49         |
|   | 32IH2           | 360                 | 0.083 | $32^3 \times 64$  | 4.8        | 57         |

物理π质量

RBC/UKQCD 合作组产生(RBC et al., 2016)

Domain wall 费米子 + Iwasaki 规范作用量(+DSDR)



对模型的选择已经能很好的估计系统误差







比较24D与32D: 有限体积效应可控

21

总结





- 提出一种计算 $\pi^0$ -极点对HLbL贡献的全新方案
- 格点QCD在缪子反常磁矩中发挥越来越重要的作用