## Three coupled channels analysis with OBE potential on Z<sub>c</sub>(3900)

#### Kang Yu, Jia-Jun Wu, Guang-Juan Wang, Zhi Yang

in preparation

The workshop on Super Tau Charm Facility @LanZhou, 2024

## Observation of Zc(3900)



Observation of Zc(3900)/Zc(3885) in :

- $e^+e^- \to Y \to \pi^+\pi^- J/\psi \ @\sqrt{s} = 4.23, 4.26 \ GeV$
- $e^+e^- \to Y \to \pi^{\pm}(D\overline{D}^*)^{\mp} @\sqrt{s} = 4.23, 4.26 \ GeV$
- $e^+e^- \rightarrow Y \rightarrow \pi^{\pm}(\rho\eta_c)^{\mp} @\sqrt{s} = 4.23 \ GeV$



$$e^+e^- \rightarrow \pi^+\pi^- J/\psi @\sqrt{s} = 4.26 \ GeV$$



$$m_{BW} = (3894.5 \pm 6.6 \pm 4.5) MeV$$
  
 $\Gamma_{BW} = (63 \pm 24 \pm 26) MeV$ 

 $e^+e^- \rightarrow \pi D\overline{D}^* @\sqrt{s} = 4.23 \ GeV$   $e^+e^- \rightarrow \pi D\overline{D}^* @\sqrt{s} = 4.26 \ GeV$ 



$$e^+e^- \rightarrow \pi^{\pm}(\rho\eta_c)^{\mp} @\sqrt{s} = 4.23 \text{ GeV}$$

PhysRevD.100.111102

$$\frac{B(Z_c(3900) \to \rho \eta_c)}{B(Z_c(3900) \to \pi J/\psi)} = 2.1 \pm 0.8$$

.8 3.9  $M_{\text{Recoil }\pi^{\pm}}$  (GeV/c<sup>2</sup>)

4

3.8

-<sub>30</sub>⊑\_ 3.7





## Lippmann Schwinger Equation

$$\boxed{T} = \boxed{V} + \boxed{V} \boxed{T}$$

PhysRevLett.119.072001

- partial-wave LSE :  $J^P = 1^+ \leftarrow$  only L=0 (s wave) is considered
- Dipole Form Factor

$$V_{\beta\alpha}(\boldsymbol{p}, \boldsymbol{k}) \rightarrow V_{\beta\alpha}(\boldsymbol{p}, \boldsymbol{k}) \left(\frac{\Lambda_{\alpha}^2}{\Lambda_{\alpha}^2 + \boldsymbol{k}^2}\right)^2 \left(\frac{\Lambda_{\beta}^2}{\Lambda_{\beta}^2 + \boldsymbol{p}^2}\right)^2$$

$$\Lambda_{D\overline{D}^*} = 1 GeV$$
,  $\Lambda_{\rho\eta_c} = \Lambda_{\pi J/\psi} = 1.5 GeV$ 

$$\left(\frac{m_{\eta_c}}{m_D} \approx \frac{m_{J/\psi}}{m_D} \approx 1.5\right)$$



Zc(3900): 3 coupled channels with OBE

## Two incoherent polynomials



#. par = 23

#. ex dat ~ 250 in total @ $\sqrt{s}$  = 4.23, 4.26 GeV



#. par = 23 #. ex dat ~ 250 in total @ $\sqrt{s}$  = 4.23, 4.26 GeV

$$e^+e^- \rightarrow \pi D \overline{D}^*$$



- dominated by cascade decay
- enhanced by interference with triangle diagram
- polynomials is considerable at the tail only (same as BES3)

 $e^+e^- \rightarrow \pi D \overline{D}^*$ 



OBE potential is weak, so FSI is perturbative compared to tree diagram.

PhysRevD.91.051504

2024/7/8 14

$$e^+e^- \rightarrow \pi^+\pi^- J/\psi$$



- dominated by triangle diagram
- polynomials gives similar line shape as MC simulation of  $\pi\pi$  FSI

$$e^+e^- \rightarrow \pi^+\pi^- J/\psi$$



## role of triangle diagram

triangle diagram = pure triangle loop + T-matrix (FSI)





2 body unitary cut :  $\pi J/\psi$ ,  $\rho\eta_c$ ,  $D\overline{D}^*$  threshold

## pure triangle loop in $e^+e^- \rightarrow \pi\pi J/\psi$



### pure triangle loop in $e^+e^- \rightarrow \pi D \overline{D}^*$



## T-matrix



## Pole of T-matrix



## Finite Volume Spectra



(all current LQCD research show no direct signal of Zc(3900))

## possible interpretation of Z<sub>c</sub>(3900)-structure

For  $e^+e^- \rightarrow \pi D\overline{D}^*$ ,  $Z_c$  structure:

- mainly from  $Y \to D_1(2420)\overline{D} \to \pi D\overline{D}^*$  cascade decay
- enhanced by interference with triangle diagram

#### For $e^+e^- \rightarrow \pi\pi J/\psi \; (\pi\rho\eta_c)$ , $Z_c$ structure:

- two cusps both exactly at  $D\overline{D}^*$  threshold
- mainly from unitary cut of T-matrix, enhanced by cut of pure triangle loop

## possible interpretation of Z<sub>c</sub>(3900)-structure

For  $e^+e^- \rightarrow \pi D\overline{D}^*$ ,  $Z_c$  structure:

• mainly from  $Y \to D_1(2420)\overline{D} \to \pi D\overline{D}^*$  cascade decay

# NOT a genuine particle, But a threshold cusp ?

- two cusps both exactly at  $D\overline{D}^*$  threshold
- mainly from unitary cut of T-matrix, enhanced by cut of pure triangle loop

## **Summary and Perspective**

#### Summary

- Three-coupled-channels with OBE interaction analysis on Z<sub>c</sub>(3900) (channel-channel interaction almost determined from previous Tcc work)
- Experimental line shapes are successfully reproduced.
- Our model is qualitatively same as all current LQCD results
- Z<sub>c</sub>(3900) may not a genuine particle but a threshold cusp

#### Perspective

- $\pi\pi$  FSI is not incorporated in a self-contained way
- $D^*\overline{D}^*$  channel and  $Z_c(4020)$
- improvement of the quality of data on STCF in the future is suggested

## Summary and Perspective

#### Summary

- Three-coupled-channels with OBE interaction analysis on Zc (channel-channel interaction almost determined from previous Tcc work)
- Experimental line shapes are successfully reproduced.
- Our model is qualitatively same as all current LQCD results
- Zc may not a genuine particle but a threshold cusp



|            | Scheme | $ \Lambda_{\pi J/\psi(\rho\eta_c)} $ (fixed)                  | $g' (10^{-5} \mathrm{MeV}^{-\frac{3}{2}})$                  |
|------------|--------|---------------------------------------------------------------|-------------------------------------------------------------|
| This work  | 1      | $1.3 { m ~GeV} \\ 1.5 { m ~GeV} \\ 1.7 { m ~GeV} \end{cases}$ | $7.506 \pm 0.120$<br>$6.143 \pm 0.070$<br>$5.129 \pm 0.070$ |
|            | 2      | $1.5  { m GeV}$<br>$1.7  { m GeV}$                            | $5.584 \pm 0.470 \\ 4.69 \pm 0.280$                         |
| Other refs |        | -                                                             | $\begin{array}{c} 3.68 \ [14] \\ 3.85 \ [39] \end{array}$   |

 $\hat{\chi}^2 \sim 1.6$ 

## Backup

w/o triangle diagram





|           | Pole Position                                                                               | Type    | $\left \operatorname{Scheme}(\Lambda_{\pi J/\psi})\right.$                                                                            |
|-----------|---------------------------------------------------------------------------------------------|---------|---------------------------------------------------------------------------------------------------------------------------------------|
| This work | 3798.72 - 1.10i<br>3798.46 - 1.71i<br>3798.12 - 2.26i<br>3798.27 - 2.02i<br>3797.80 - 2.64i | Virtual | $\begin{array}{ c c c } 1(1.3 {\rm GeV}) \\ 1(1.5 {\rm GeV}) \\ 1(1.7 {\rm GeV}) \\ 2(1.5 {\rm GeV}) \\ 2(1.7 {\rm GeV}) \end{array}$ |

## Backup

