QCD sum rule study on the light hybrid states

陈华星

东南大学物理学院

合作者:苏妞、谭为瀚、陈伟、朱世琳

Contents

Present status of hadron spectroscopy

- QCD sum rule studies on hybrid states
- Decay analyses on hybrid states
- Studies on the $J^{PC} = 1^{-+}$ hybrid states

Quark model

Phys.Lett. 8 (1964) 214-215

Volume 8, number 3

PHYSICS LETTERS

1 February 1964

A SCHEMATIC MODEL OF BARYONS AND MESONS

M. GELL-MANN California Institute of Technology, Pasadena, California

Received 4 January 1964

A simpler and more elegant scheme can be constructed if we allow non-integral values for the charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: $spin \frac{1}{2}$, $z = -\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members u^3 , $d^{-\frac{1}{3}}$, and $s^{-\frac{1}{3}}$ of the triplet as "quarks" 6) q and the members of the anti-triplet as anti-quarks \bar{q} . Baryons can now be constructed from quarks by using the combinations (q q q), $(q q \bar{q} \bar{q})$, etc. It is assuming that the lowest baryon configuration (q q q) gives just the representations 1, 8, and 10 that have been observed, while

8419/TH.412 21 February 1964

*)

6)

AN SU3 MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BREAKING

II *)

G. Zweig

CERN ---- Geneva

. . .

Version I is CERN preprint 8182/TH.401, Jan. 17, 1964.

In general, we would expect that baryons are built not only from the product of three aces, AAA, but also from AAAAA, AAAAAAA, etc., where A denotes an anti-ace. Similarly, mesons could be formed from AA, AAAA etc. For the low mass mesons and baryons we will assume the simplest possibilities, AA and AAA, that is, "deuces and treys".

Quark model

	LIGHT UN	FLAVORED		STRA	NGE	CHARMED, S	STRANGE	6	7
	(S = C =	= B = 0)		$(S = \pm 1, C$	= B = 0)	(C = S =	±1)		$I^{G}(J^{PC})$
	$I^{G}(J^{PC})$		$I^{G}(J^{PC})$		$I(J^{\rho})$		$I(J^{\rho})$	• $\eta_c(1S)$	0+(0-+)
• π^{\pm}	$1^{-}(0^{-})$	• $\pi_2(1670)$	$1^{-}(2^{-+})$	• K±	$1/2(0^{-})$	 D[±]_s 	$0(0^{-})$	 J/ψ(1S) 	0-(1)
 π⁰ 	$1^{-}(0^{-+})$	 \$\phi(1680)\$ 	$0^{-}(1^{-})$	• K ⁰	$1/2(0^{-})$	• D ^{*±}	0(??)	• $\chi_{c0}(1P)$	$0^{+}(0^{++})$
• η	0+(0-+)	 ρ₃(1690) 	1+(3)	• K_S^0	$1/2(0^{-})$	 D[*]_{s0}(2317)[±] 	$0(0^{+})$	• $\chi_{c1}(1P)$	$0^{+}(1^{++})$
 f₀(600) 	$0^{+}(0^{++})$	 ρ(1700) 	$1^{+}(1^{})$	• K ⁰ _L	$1/2(0^{-})$	 D_{s1}(2460)[±] 	$0(1^+)$	• $h_c(1P)$	$?^{?}(1^{+}-)$
 ρ(770) 	$1^{+}(1^{-})$	$a_2(1700)$	$1^{-}(2^{++})$	$K_{0}^{*}(800)$	$1/2(0^+)$	 D_{s1}(2536)[±] 	$0(1^+)$	• $\chi_{c2}(1P)$	$0^{+}(2^{++})$
 ω(782) 	0-(1)	 f₀(1710) 	$0^{+}(0^{++})$	 K*(892) 	$1/2(1^{-})$	 D_{s2}(2573)[±] 	$0(?^{?})$	• $\eta_c(2S)$	0+(0 - +)
 η'(958) 	0+(0-+)	$\eta(1760)$	$0^{+}(0^{-+})$	 K₁(1270) 	$1/2(1^+)$	$D_{s1}(2700)^{\pm}$	$0(1^{-})$	 ψ(2S) 	0-(1)
 f₀(980) 	$0^{+}(0^{++})$	 π(1800) 	$1^{-}(0^{-+})$	 K₁(1400) 	$1/2(1^+)$,	```	 ψ(3770) 	$0^{-}(1^{-})$
 a₀(980) 	$1^{-}(0^{++})$	$f_2(1810)$	$0^{+}(2^{++})$	 K*(1410) 	$1/2(1^{-})$	BOTTO	MO	 X(3872) 	0'(?'+)
 \$\phi(1020)\$ 	0-(1)	X(1835)	? [?] (? ⁻⁺)	 K[*]₀(1430) 	$1/2(0^+)$	$(B = \pm$	=1)	$\chi_{c2}(2P)$	$0^{+}(2^{++})$
 h₁(1170) 	$0^{-}(1^{+})$	• $\phi_3(1850)$	0-(3)	 K[*]₂(1430) 	$1/2(2^+)$	• B±	$1/2(0^{-})$	X(3940)	?(?(?))
 b₁(1235) 	$1^{+}(1^{+})$	$\eta_2(1870)$	0+(2-+)	K(1460)	$1/2(0^{-})$	• B ⁰	$1/2(0^{-})$	X(3945)	?'(?'')
 a₁(1260) 	$1^{-}(1^{++})$	• $\pi_2(1880)$	$1^{-}(2^{-+})$	$K_2(1580)$	$1/2(2^{-})$	 B[±]/B⁰ ADN 	IIXTURE	 ψ(4040) 	0-(1)
 f₂(1270) 	$0^{+}(2^{++})$	$\rho(1900)$	$1^{+}(1^{})$	K(1630)	$1/2(?^{?})$	• $B^{\pm}/B^{0}/B^{0}_{s}/$	b-baryon	 ψ(4160) 	$0^{-}(1^{-})$
 f₁(1285) 	$0^{+}(1^{++})$	$f_2(1910)$	$0^{+}(2^{++})$	$K_1(1650)$	1/2(1+)	ADMIXTUR	E CKM Ma	 X(4260) 	$?_{2}^{f}(1^{-})$
 η(1295) 	0+(0 - +)	 f₂(1950) 	$0^{+}(2^{++})$	 K*(1680) 	1/2(1-)	trix Elements	Crain Inia-	X(4360)	? ^f (1)
 π(1300) 	$1^{-}(0^{-+})$	$\rho_3(1990)$	1+(3)	 K₂(1770) 	$1/2(2^{-})$	• B*	1/2(1-)	 ψ(4415) 	0-(1)
 a₂(1320) 	$1^{-}(2^{++})$	 f₂(2010) 	$0^{+}(2^{++})$	 K[*]₂(1780) 	$1/2(3^{-1})$	B*(5732)	?(??)		-
 f₀(1370) 	$0^{+}(0^{+})$	f ₀ (2020)	$0^{+}(0^{+}+)$	• K ₂ (1820)	$1/2(2^{-})$	 B₁(5721)⁰ 	$1/2(1^+)$	L	D .
$h_1(1380)$?-(1+-)	 a₄(2040) 	$1^{-}(4^{++})$	K(1830)	$1/2(0^{-})$	 B[*]₂(5747)⁰ 	$1/2(2^+)$	$\eta_b(1S)$	0+(0-+)
 π₁(1400) 	$1^{-}(1^{-+})$	 f₄(2050) 	$0^{+}(4^{++})$	K*(1950)	$1/2(0^+)$	21 7	, , ,	 <i>𝔅</i>(1<i>𝔅</i>) 	$0^{-}(1^{-})$
 η(1405) 	0+(0 - +)	$\pi_2(2100)$	$1^{-}(2^{-+})$	K*(1980)	$1/2(2^+)$	BOTTOM, S	TRANGE	• $\chi_{b0}(1P)$	$0^+(0^++)$
 f₁(1420) 	$0^{+}(1^{++})$	f ₀ (2100)	$0^{+}(0^{+}+)$	 K[*](2045) 	$1/2(4^+)$	$(B = \pm 1, 5)$	$5 = \mp 1$)	• $\chi_{b1}(1P)$	$0^+(1^+)$
 ω(1420) 	$0^{-}(1^{-})$	$f_2(2150)$	$0^{+}(2^{++})$	$K_{2}(2250)$	$1/2(2^{-})$	• B ⁰ _s	$0(0^{-})$	• $\chi_{b2}(1P)$	$0^+(2^+)$
f ₂ (1430)	0+(2++)	$\rho(2150)$	$1^{+}(1^{})$	$K_2(2320)$	$\frac{1}{2}(2^{+})$	• B_{s}^{*}	$0(1^{-})$	 <i>r</i>(2S) 	0-(1)
 a₀(1450) 	$1^{-}(0^{++})$	$\phi(2170)$	0-(1)	K*(2380)	$1/2(5^{-})$	 B_{s1}(5830)⁰ 	$1/2(1^+)$	T(1D)	0-(2)
 ρ(1450) 	$1^+(1^{})$	f ₀ (2200)	$0^{+}(0^{++})$	K ₁ (2500)	$1/2(4^{-})$	 B[*]_{s2}(5840)⁰ 	$1/2(2^+)$	 χ_{b0}(2P) 	$0^+(0^++)$
 η(1475) 	0+(0 - +)	$f_J(2220)$	0+(2++ o	4 K(3100)	$\frac{1}{2}(4)$	$B_{sJ}^{*}(5850)$?(? [?])	• $\chi_{b1}(2P)$	$0^+(1^+)$
 f₀(1500) 	$0^{+}(0^{+}+)$	$\eta(2225)$	$0^{+}(0^{-+})$	N(3100)	·(;)	DOTTOUL		• $\chi_{b2}(2P)$	$0^+(2^{++})$
$f_1(1510)$	$0^{+}(1^{++})$	$\rho_3(2250)$	$1^{+}(3^{-})$	CHARI	MED	BOLLOW'S	HARMED	 <i>\(\Color (3S)\)</i> 	0-(1)

Previous Studies

MIT bag model: A. Chodos et al., Phys. Rev. D9, 3471 (1974); R. L. Jaffe and K. Johnson, Phys. Lett. 60B, 201 (1976). Flux tube model: N. Isgur and J. E. Paton, Phys. Rev. D31, 2910 (1985). Coulomb Gauge: A. Szczepaniak et al., Phys. Rev. Lett. 76, 2011 (1996); F. J. Llanes-Estrada, P. Bicudo and S. R. Cotanch, Phys. Rev. Lett. 96, 081601 (2006). Glueball trajectories: I. Szanyi et al., Nucl. Phys. A998, 121728 (2020). Lattice QCD: K. G. Wilson, Phys. Rev. D10, 2445 (1974); Y. Chen et al., Phys. Rev. D73, 014516 (2006); V. Mathieu, N. Kochelev and V. Vento, IJMPE 18, 1 (2009); E. Gregory et al., JHEP 1210, 170 (2012); A. Athenodorou and M. Teper, JHEP 11 (2020) 172. **QCD sum rules:** V. A. Novikov, M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, NPB165, 67 (1980); S. Narison, Z. Phys. C26, 209 (1984); S. Narison, Nucl. Phys. B509, 312 (1998); J. I. Latorre, S. Narison and S. Paban, Phys. Lett. B191, 437 (1987); E. Bagan and T. G. Steele, Phys. Lett. B243, 413 (1990); G. Hao, C. F. Qiao and A. L. Zhang, Phys. Lett. B642, 53 (2006); C. F. Qiao and L. Tang, Phys. Rev. Lett. 113, 221601 (2014); A. Pimikov, H. J. Lee, N. Kochelev and P. Zhang, Phys. Rev. D95, 071501(R) (2017);

A. Pimikov, Phys. Rev. D106, 056011 (2022).

Recent D0 and TOTEM experiments

- There is currently no definite evidence for the glueball's existence.
- Recently, D0 and TOTEM studied pp and $p\bar{p}$ cross sections, and found them differ with a significance of 3.4σ (which can be increased to be $5.2 5.7\sigma$).

D0 Collaboration, Phys. Rev. D 86, 012009 (2012);

D0 and TOTEM Collaborations, Phys. Rev. Lett. 127, 062003 (2021);

TOTEM Collaboration, Eur. Phys. J. C 79, 785 (2019).

The above difference leads to the evidence of a *t*-channel exchanged odderon, i.e., predominantly a three-gluon glueball of C = -.

COMPETE Collaboration, Phys. Rev. Lett. 89, 201801 (2002);

V. A. Khoze, A. D. Martin and M. G. Ryskin, Phys. Rev. D 97, 034019 (2018);

E. Martynov and B. Nicolescu, Eur. Phys. J. C 79, 461 (2019).

Interests in glueballs are reviving recently!

Recent D0 and TOTEM experiments

Interests in glueballs are reviving recently!

Recent BESIII experiment

- There is currently no definite evidence for the hybrid's existence.
- Up to now there are three candidates observed in experiments with the exotic quantum number $I^G J^{PC} = 1^- 1^{-+}$:

 $\pi_1(1400)$, $\pi_1(1600)$, and $\pi_1(2015)$.

D. Alde, et al., Phys. Lett. B 205 (1988) 397.

G. S. Adams, et al., Phys. Rev. Lett. 81 (1998) 5760-5763.

J. Kuhn, et al., Phys. Lett. B 595 (2004) 109-117.

• Recently, BESIII studied the $J/\psi \rightarrow \gamma \eta \eta'$ decay, and observed the $\eta_1(1855)$ with the exotic quantum number $I^G J^{PC} = 0^+ 1^{-+}$, which is a good candidate for the hybrid state.

BESIII Collaboration, Phys. Rev. Lett. 129, 192002 (2022); BESIII Collaboration, Phys. Rev. D 106, 072012 (2022).

Interests in hybrid states are reviving recently!

Recent BESIII experiment

The statistical significance is larger than 19σ .

Interests in hybrid states are reviving recently!

Recent theoretial studies

Hybrid interpretation:

- L. Qiu and Q. Zhao, Chin. Phys. C46, 051001 (2022);
- V. Shastry, C. S. Fischer and F. Giacosa, Phys. Lett. B834, 137478 (2022);
- F. Chen, et al., Phys. Rev. D107, 054511 (2023);
- E. S. Swanson, Phys. Rev. D107, 074028 (2023);
- C. Shi, et al., Phys. Rev. D109, 094513 (2024);
- B. Chen, S. Q. Luo and X. Liu, Phys. Rev. D108, 054034 (2023);
- C. Farina and E. S. Swanson, Phys. Rev. D109, 094015 (2024).

Molecular interpretation:

- X. K. Dong, et al., Sci. China Phys. Mech. Astron. 65, 261011 (2022);
- X. Zhang and J.-J. Xie, Chin. Phys. C44, 054104 (2020);
- F. Yang, H. Q. Zhu and Y. Huang, Nucl. Phys. A1030, 122571 (2023);
- X. Y. Wang, F. C. Zeng and X. Liu, Phys. Rev. D106, 036005 (2022);
- M. J. Yan, et al. Universe 9, 109 (2023);
- Q. H. Shen and J. J. Xie, Phys. Rev. D107, 034019 (2023);
- Y. Yu, et al., Phys. Lett. B842, 137965 (2023);
- X. K. Dong, Phys. Lett. B853, 138646 (2024).

> Tetraquark interpretation:

- H. X. Chen, A. Hosaka, and S. L. Zhu, Phys. Rev. D78, 117502 (2008);
- B. D. Wan, S. Q. Zhang and C. F. Qiao, Phys. Rev. D106, 074003 (2022).

Recent theoretial studies

>Hybrid interpretation:

≻M

X

Х.

F.

- L. Qiu and Q. Zhao, Chin. Phys. C46, 051001 (2022);
- V. Shastry, C. S. Fischer and F. Giacosa, Phys. Lett. B834, 137478 (2022);
- F. Chen, et al., Phys. Rev. D107, 054511 (2023);
- E. S. Swanson, Phys. Rev. D107, 074028 (2023);
- C. Shi, et al., Phys. Rev. D109, 094513 (2024);
- B. Chen, S. Q. Luo and X. Liu, Phys. Rev. D108, 054034 (2023);

Hua-Xing Chen, Wei Chen, Xiang Liu, Yan-Rui Liu and Shi-Lin Zhu, An updated review of the new hadron states, Rept. Prog. Phys. 86, 026201 (2023), [arXiv:2204.02649 [hep-ph]].

- X. Y. Wang, F. C. Zeng and X. LIU, Phys. Rev. D106, 036005 (2022);
- M. J. Yan, et al. Universe 9, 109 (2023);
- Q. H. Shen and J. J. Xie, Phys. Rev. D107, 034019 (2023);
- Y. Yu, et al., Phys. Lett. B842, 137965 (2023);
- X. K. Dong, Phys. Lett. B853, 138646 (2024).

> Tetraquark interpretation:

- H. X. Chen, A. Hosaka, and S. L. Zhu, Phys. Rev. D78, 117502 (2008);
- B. D. Wan, S. Q. Zhang and C. F. Qiao, Phys. Rev. D106, 074003 (2022).

Contents

• Present status of hadron spectroscopy

•QCD sum rule studies on hybrid states

- Decay analyses on hybrid states
- Studies on the $J^{PC} = 1^{-+}$ hybrid states

QCD sum rule approach

H. X. Chen, Z. X. Cai, P. Z. Huang and S. L. Zhu, Phys. Rev. D83, 014006 (2011);

P. Z. Huang, H. X. Chen and S. L. Zhu, Phys. Rev. D83, 014021 (2011).

Predicted the $\eta\eta'$ decay mode of the $\eta_1(1855)$

H. X. Chen, W. Chen and S. L. Zhu, Phys. Rev. D103, L091503 (2021);

H. X. Chen, W. Chen and S. L. Zhu, Phys. Rev. D104, 094050 (2021);

H. X. Chen, W. Chen and S. L. Zhu, Phys. Rev. D105, L051501 (2022);

H. X. Chen, N. Su and S. L. Zhu, Chin. Phys. Lett. 39, 051201 (2022);

N. Su, H. X. Chen, W. Chen and S. L. Zhu, Phys. Rev. D107, 034010 (2023);

N. Su, W. H. Tan, H. X. Chen, W. Chen and S. L. Zhu, Phys. Rev. D107, 114005 (2023);

N. Su, H. X. Chen, W. Chen and S. L. Zhu, Phys. Rev. D109, L011502 (2024);

W. H. Tan, N. Su, H. X. Chen, arxiv: 2405.06958 [hep-ph].

Separated operators

R. L. Jaffe, K. Johnson and Z. Ryzak Annals Phys. 168, 344 (1986)

$$\vec{E}_a = G^a_{i0}$$
 and $\vec{B}_a = -\frac{1}{2}\epsilon_{ijk}G^a_{jk}$

JPC	Operator
0++	$f_{abc} \left(\vec{E}_a imes \vec{E}_b ight) \cdot \vec{B}_c$
0-+	$ f_{abc}(\vec{E}_a \times \vec{E}_b) \cdot \vec{E}_c$
1-+	$f_{abc}(\vec{B}_a \cdot \vec{E}_b)\vec{B}_c$
1++	$\int f_{abc} (\vec{E}_a \cdot \vec{B}_b) \vec{E}_c$
2++	$\int f_{abc} \left\{ \left(\vec{B}_a \times \vec{B}_b \right)^i B_c^j - \left(\vec{E}_a \times \vec{E}_b \right)^i B_c^j + 2 \left(\vec{B}_a \times \vec{E}_b \right)^i E_c^j \right\}$
	$\left +(i \leftrightarrow j) - \frac{2}{3} \delta^{ij} \left[\left(\vec{B}_a \times \vec{B}_b \right) \cdot \vec{B}_c + \left(\vec{E}_a \times \vec{E}_b \right) \cdot \vec{B}_c \right] \right\}$
2-+	$\int f_{abc} \left\{ \left(\vec{E}_a \times \vec{E}_b \right)^i E_c^j - \left(\vec{B}_a \times \vec{B}_b \right)^i E_c^j + 2 \left(\vec{E}_a \times \vec{B}_b \right)^i B_c^j \right\}$
	$+(i \leftrightarrow j) - \frac{2}{3} \delta^{ij} \big[\big(\vec{E}_a \times \vec{E}_b\big) \cdot \vec{E}_c + \big(\vec{B}_a \times \vec{B}_b\big) \cdot \vec{E}_c \big] \Big\}$

C=+ three-gluon operators

Combined currents

 $G^a_{\mu\nu}$ and $\widetilde{G}^a_{\mu\nu}$

$$\begin{split} \eta_0 &= f^{abc} g_s^3 G_a^{\mu\nu} G_{b,\nu\rho} G_{c,\mu}^{\rho}, \\ \tilde{\eta}_0 &= f^{abc} g_s^3 \tilde{G}_a^{\mu\nu} \tilde{G}_{b,\nu\rho} \tilde{G}_{c,\mu}^{\rho}, \\ \eta_1^{\alpha\beta} &= f^{abc} g_s^3 \tilde{G}_a^{\mu\nu} G_{b,\mu\nu} \tilde{G}_c^{\alpha\beta}, \\ \tilde{\eta}_1^{\alpha\beta} &= f^{abc} g_s^3 \tilde{G}_a^{\mu\nu} G_{b,\mu\nu} G_c^{\alpha\beta}, \\ \eta_2^{\alpha_1\alpha_2,\beta_1\beta_2} &= f^{abc} \mathcal{S}[g_s^3 G_a^{\alpha_1\beta_1} G_b^{\alpha_2\mu} G_{c,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\}], \\ \tilde{\eta}_2^{\alpha_1\alpha_2,\beta_1\beta_2} &= f^{abc} \mathcal{S}[g_s^3 \tilde{G}_a^{\alpha_1\beta_1} \tilde{G}_b^{\alpha_2\mu} \tilde{G}_{c,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\}]. \end{split}$$

Separated operators

$$\vec{E}_a = G^a_{i0}$$
 and $\vec{B}_a = -\frac{1}{2}\epsilon_{ijk}G^a_{jk}$ $G^a_{\mu\nu}$ and $\widetilde{G}^a_{\mu\nu}$

Separated operators

 $G^a_{\mu\nu}$ and $\widetilde{G}^a_{\mu\nu}$

$$\vec{E}_a = G^a_{i0}$$
 and $\vec{B}_a = -\frac{1}{2}\epsilon_{ijk}G^a_{jk}$

$$\begin{array}{ll}
0^{++} & f^{abc}(\vec{E}_a \times \vec{E}_b) \cdot \vec{B}_c ,\\
0^{-+} & f^{abc}(\vec{E}_a \times \vec{E}_b) \cdot \vec{E}_c ,\\
1^{++} & f^{abc}(\vec{B}_a \cdot \vec{E}_b) \vec{E}_c , \neq \mathbf{0} \\
1^{-+} & f^{abc}(\vec{B}_a \cdot \vec{E}_b) \vec{B}_c , \neq \mathbf{0} \\
2^{++} & f^{abc} \mathcal{S}'[(\vec{B}_a \times \vec{B}_b)^i B_c^j] + \cdots ,\\
2^{-+} & f^{abc} \mathcal{S}'[(\vec{E}_a \times \vec{E}_b)^i E_c^j] + \cdots .
\end{array}$$

$$\begin{split} \eta_{0} &= f^{abc} g_{s}^{3} G_{a}^{\mu\nu} G_{b,\nu\rho} G_{c,\mu}^{\rho} \,, \\ \tilde{\eta}_{0} &= f^{abc} g_{s}^{3} \tilde{G}_{a}^{\mu\nu} \tilde{G}_{b,\nu\rho} \tilde{G}_{c,\mu}^{\rho} \,, \\ \eta_{1}^{\alpha\beta} &= f^{abc} g_{s}^{3} \tilde{G}_{a}^{\mu\nu} G_{b,\mu\nu} \tilde{G}_{c}^{\alpha\beta} \,, = \mathbf{0} \\ \tilde{\eta}_{1}^{\alpha\beta} &= f^{abc} g_{s}^{3} \tilde{G}_{a}^{\mu\nu} G_{b,\mu\nu} G_{c}^{\alpha\beta} \,, = \mathbf{0} \\ \eta_{2}^{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} &= f^{abc} \mathcal{S}[g_{s}^{3} G_{a}^{\alpha_{1}\beta_{1}} G_{b}^{\alpha_{2}\mu} G_{c,\mu}^{\beta_{2}} - \{\alpha_{2} \leftrightarrow \beta_{2}\}] \,, \\ \tilde{\eta}_{2}^{\alpha_{1}\alpha_{2},\beta_{1}\beta_{2}} &= f^{abc} \mathcal{S}[g_{s}^{3} \tilde{G}_{a}^{\alpha_{1}\beta_{1}} \tilde{G}_{b}^{\alpha_{2}\mu} \tilde{G}_{c,\mu}^{\beta_{2}} - \{\alpha_{2} \leftrightarrow \beta_{2}\}] \,. \end{split}$$

Color-Singlet Meson Currents

$\overline{q}_a q_a$	$J^P = 0^+$	
$\overline{q}_a \gamma_5 q_a$	$J^{P} = 0^{-}$	Lorentz indices
$\overline{q}_a \gamma_\mu q_a$	$J^{P} = 1^{-}$	color indices
$\overline{q}_a \gamma_\mu \gamma_5 q_a$	$J^{P} = 1^{+}$	flavor indices needed
$\overline{q}_a \sigma_{\mu u} q_a$	$J^P = 1^{\pm}$	

Color-Octet Meson Currents

 $\bar{q}_a \lambda_n^{ab} q_b \qquad J^P = 0^+$ $\overline{q}_a \gamma_5 \lambda_n^{ab} q_b \qquad J^P = 0^-$ **Lorentz indices** $\bar{q}_a \gamma_\mu \lambda_n^{ab} q_b \qquad J^P = 1^$ **color indices** $\bar{q}_a \gamma_\mu \gamma_5 \lambda_n^{ab} q_b \quad J^P = 1^+$ flavor indices needed $\bar{q}_a \sigma_{\mu\nu} \lambda_n^{ab} q_b \quad J^P = 1^{\pm}$

Single-gluon hybrid curents

$\overline{q}_{a}\lambda_{n}^{ab}q_{b} \quad \overline{q}_{a}\gamma_{5}\lambda_{n}^{ab}q_{b} \quad \overline{q}_{a}\sigma_{\mu\nu}\lambda_{n}^{ab}q_{b}$ $\overline{q}_{a}\gamma_{\mu}\lambda_{n}^{ab}q_{b} \quad \overline{q}_{a}\gamma_{\mu}\gamma_{5}\lambda_{n}^{ab}q_{b}$

G G_n and \tilde{G}_n

Single-gluon hybrid curents

$$\begin{split} & \begin{array}{c} & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

 $\overrightarrow{q}_a \lambda_n^{ab} \gamma_5 q_b (j_{\overline{q}q} = 0, 8_c) \longrightarrow j = 1 \longrightarrow J_{1^{--}}^{\alpha\beta}$

 $j=2 \longrightarrow J_{2^{-+}}^{\alpha_1\beta_1,\alpha_2\beta_2} \widetilde{J}_{2^{++}}^{\alpha_1\beta_1,\alpha_2\beta_2}$

 $\widetilde{J}_{1^{\text{+-}}}^{\alpha\beta}$

Double-gluon hybrid curents

 \overline{q}

GG

$$d^{npq}G_{p}G_{q} \quad d^{npq}G_{p}\tilde{G}_{q} \quad d^{npq}\tilde{G}_{p}\tilde{G}_{q}$$

$$f^{npq}G_{p}G_{q} \quad f^{npq}G_{p}\tilde{G}_{q} \quad f^{npq}\tilde{G}_{p}\tilde{G}_{q}$$

Double-gluon hybrid curents

 $J_{1^{++}(j=0)}^{lphaeta} \;=\; ar{q}_a \sigma^{lphaeta} \lambda_n^{ab} q_b \; f^{npq} \; g_s^2 G_p^{\mu
u} G_{q,\mu
u} \,,$ $J_{0^{++}(j=1)} = \bar{q}_a \sigma^{\mu\nu} \lambda_n^{ab} q_b f^{npq} g_s^2 G_{p,\nu\rho} G_{q,\mu}^{\rho},$ $J_{1^{++}(j=1)}^{\alpha\beta} = \bar{q}_a \sigma_{\alpha_1\beta_1} \lambda_n^{ab} q_b \ f^{npq} \ g_s^2 \left(G_{p,\alpha_2\mu} G_{q,\beta_2}^{\mu} - \{\alpha_2 \leftrightarrow \beta_2\} \right) \times g^{\beta_1\beta_2} (g^{\alpha\alpha_1} g^{\beta\alpha_2} - g^{\beta_1\beta_2} g$ $J_{2^{++}(j=1)}^{\alpha_1\beta_1,\alpha_2\beta_2} = \mathcal{S}[\bar{q}_a \sigma^{\alpha_1\beta_1} \lambda_n^{ab} q_b \ f^{npq} \ g_s^2 \left(G_p^{\alpha_2\mu} G_{q,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\} \right)],$ $J_{1^{++}(j=2)}^{\alpha\beta} = \bar{q}_a \sigma^{\mu_2\nu_2} \lambda_n^{ab} q_b \ f^{npq} \ \mathcal{S}'[g_s^2 G_{p,\mu_1\nu_1} G_{q,\mu_2\nu_2}] \times g^{\alpha\mu_1} g^{\beta\nu_1}$ $J_{2^{++}(j=2)}^{\alpha_1\beta_1,\alpha_2\beta_2} = S[\bar{q}_a\sigma_{\mu_3\nu_3}\lambda_n^{ab}q_b \ f^{npq} \ S'[g_s^2G_{p,\mu_1\nu_1}G_{q,\mu_2\nu_2}] \times g^{\alpha_1\mu_1}g^{\beta_1\nu_1}g^{\nu_2\nu_3}(g^{\alpha_2\mu_2}g^{\beta_1\mu_1}g^{\beta_1\nu_2}g^{\beta_2\mu_2}) + S_{1,\mu_1}^{\alpha_1\beta_1}g^{\alpha_2\mu_2}g^{\beta_1\mu_1}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_2\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_2\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_2\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_1\mu_2}g^{\beta_2\mu_2}g^{\beta_1\mu_2$ $J_{3^{++}(j=2)}^{\alpha_1\beta_1,\alpha_2\beta_2,\alpha_3\beta_3} \; = \; \mathcal{S}[\bar{q}_a\sigma^{\alpha_1\beta_1}\lambda_n^{ab}q_b\; f^{npq}\; g_s^2G_p^{\alpha_2\beta_2}G_q^{\alpha_3\beta_3}]\,,$ $J^{\alpha\beta}_{1^{-+}(j=0)} = \bar{q}_a \sigma^{\alpha\beta} \lambda^{ab}_n q_b f^{npq} g^2_s G^{\mu\nu}_p \tilde{G}_{q,\mu\nu} ,$ $J_{0^{-+}(j=1)} = \bar{q}_a \sigma^{\mu\nu} \lambda_n^{ab} q_b f^{npq} g_s^2 G_{p,\nu\rho} \tilde{G}_{q,\mu}^{\rho},$ $J_{1^{-+}(j=1)}^{\alpha\beta} = \bar{q}_a \sigma_{\alpha_1\beta_1} \lambda_n^{ab} q_b f^{npq} g_s^2 \left(G_{p,\alpha_2\mu} \tilde{G}^{\mu}_{q,\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\} \right) \times g^{\beta_1\beta_2} (g^{\alpha\alpha_1} g^{\beta\alpha_2} \ \bar{q}_a \sigma_{\mu\nu} \lambda_n^{ab} q_b)$ $(j_{\bar{a}a}=1, 8_{c})$ $J_{2^{-+}(j=1)}^{\alpha_1\beta_1,\alpha_2\beta_2} = \mathcal{S}[\bar{q}_a \sigma^{\alpha_1\beta_1} \lambda_n^{ab} q_b \ f^{npq} \ g_s^2 \left(G_p^{\alpha_2\mu} \tilde{G}_{q,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\} \right)],$ $J_{1^{-+}(j=2)}^{\alpha\beta} = \bar{q}_a \sigma^{\mu_2\nu_2} \lambda_n^{ab} q_b f^{npq} \mathcal{S}'[g_s^2 G_{p,\mu_1\nu_1} \tilde{G}_{q,\mu_2\nu_2}] \times g^{\alpha\mu_1} g^{\beta\nu_1} ,$ $J_{2^{-+}(j=2)}^{\alpha_1\beta_1,\alpha_2\beta_2} = \mathcal{S}[\bar{q}_a\sigma_{\mu_3\nu_3}\lambda_n^{ab}q_b \ f^{npq} \ \mathcal{S}'[g_s^2G_{p,\mu_1\nu_1}\tilde{G}_{q,\mu_2\nu_2}] \times g^{\alpha_1\mu_1}g^{\beta_1\nu_1}g^{\nu_2\nu_3}(g^{\alpha_2\mu_2}g^{\beta_1\mu_1}g^{\beta_1\mu_2}g^$ $J_{3^{-+}(j=2)}^{\alpha_1\beta_1,\alpha_2\beta_2,\alpha_3\beta_3} = \mathcal{S}[\bar{q}_a\sigma^{\alpha_1\beta_1}\lambda_n^{ab}q_b \ f^{npq} \ g_s^2G_p^{\alpha_2\beta_2}\tilde{G}_q^{\alpha_3\beta_3}],$ $J_{1^{+-}(i=0)}^{lphaeta} = \bar{q}_a \sigma^{lphaeta} \lambda_n^{ab} q_b \ d^{npq} \ g_s^2 G_p^{\mu
u} G_{q,\mu
u} \,,$ $J_{0^{+-}(j=1)} = \bar{q}_a \sigma^{\mu\nu} \lambda_n^{ab} q_b \ d^{npq} \ g_s^2 G_{p,\nu\rho} G_{q,\mu}^{\rho} \,,$ $J_{1^{+-}(j=1)}^{\alpha\beta} = \bar{q}_a \sigma_{\alpha_1\beta_1} \lambda_n^{ab} q_b \ d^{npq} \ g_s^2 \left(G_{p,\alpha_2\mu} G_{q,\beta_2}^{\mu} - \{\alpha_2 \leftrightarrow \beta_2\} \right) \times g^{\beta_1\beta_2} (g^{\alpha\alpha_1} g^{\beta\alpha_2} - g^{\beta_1\beta_2} g$ $J_{2^{+-}(j=1)}^{\alpha_1\beta_1,\alpha_2\beta_2} = \mathcal{S}[\bar{q}_a \sigma^{\alpha_1\beta_1} \lambda_n^{ab} q_b \ d^{npq} \ g_s^2 \left(G_p^{\alpha_2\mu} G_{q,\mu}^{\beta_2} - \{\alpha_2 \leftrightarrow \beta_2\} \right)],$ $J_{1^{+-}(j=2)}^{\alpha\beta} = \bar{q}_a \sigma^{\mu_2\nu_2} \lambda_n^{ab} q_b \ d^{npq} \ \mathcal{S}'[g_s^2 G_{p,\mu_1\nu_1} G_{q,\mu_2\nu_2}] \times g^{\alpha\mu_1} g^{\beta\nu_1}$ $J_{2^{+-}(j=2)}^{\alpha_{1}\beta_{1},\alpha_{2}\beta_{2}} = \mathcal{S}[\bar{q}_{a}\sigma_{\mu_{3}\nu_{3}}\lambda_{n}^{ab}q_{b} \ d^{npq} \ \mathcal{S}'[g_{s}^{2}G_{p,\mu_{1}\nu_{1}}G_{q,\mu_{2}\nu_{2}}] \times g^{\alpha_{1}\mu_{1}}g^{\beta_{1}\nu_{1}}g^{\nu_{2}\nu_{3}}(g^{\alpha_{2}\mu_{2}}g^{\beta_{1}}) + g^{\beta_{1}\mu_{1}}g^{\beta_{1}\mu_{2}}g^{\beta_{1}\mu_{2}}g^{\beta_{1}\mu_{2}}g^{\beta_{2}}]$ $J^{\alpha_1\beta_1,\alpha_2\beta_2,\alpha_3\beta_3}_{3^{+-}(j=2)} \; = \; \mathcal{S}[\bar{q}_a\sigma^{\alpha_1\beta_1}\lambda^{ab}_nq_b \; d^{npq} \; g^2_s G^{\alpha_2\beta_2}_p G^{\alpha_3\beta_3}_q] \, ,$ $J^{\alpha\beta}_{1^{--}(j=0)} = \bar{q}_a \sigma^{\alpha\beta} \lambda^{ab}_n q_b \ d^{npq} \ g^2_s G^{\mu\nu}_p \tilde{G}_{q,\mu\nu} \,,$ $J_{0^{--}(i=1)} = \bar{q}_{a} \sigma^{\mu\nu} \lambda_{n}^{ab} q_{b} d^{npq} g_{s}^{2} G_{p,\nu\rho} \tilde{G}_{q,\mu}^{\rho},$

$$\begin{array}{c} \mathsf{j} = 0 \ (\mathrm{S}) \rightarrow \mathsf{J} = 1 \quad |\mathsf{X}; \mathsf{1}^{**}(\mathsf{j} = 0) > = \mathbf{0} \\ \mathsf{J} = 0 \quad |\mathsf{X}; 0^{*+}(\mathsf{j} = 1) > \\ \mathsf{J} = 0 \quad |\mathsf{X}; 0^{*+}(\mathsf{j} = 1) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*+}(\mathsf{j} = 1) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*+}(\mathsf{j} = 1) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*+}(\mathsf{j} = 2) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*+}(\mathsf{j} = 2) > = \mathbf{0} \\ \mathsf{J} = 3 \quad |\mathsf{X}; 3^{*+}(\mathsf{j} = 2) > = \mathbf{0} \\ \mathsf{J} = 3 \quad |\mathsf{X}; 3^{*+}(\mathsf{j} = 2) > = \mathbf{0} \\ \mathsf{J} = 3 \quad |\mathsf{X}; 3^{*+}(\mathsf{j} = 2) > = \mathbf{0} \\ \mathsf{J} = 3 \quad |\mathsf{X}; 3^{*+}(\mathsf{j} = 2) > = \mathbf{0} \\ \mathsf{J} = 3 \quad |\mathsf{X}; 3^{*+}(\mathsf{j} = 2) > = \mathbf{0} \\ \mathsf{J} = 1 \quad |\mathsf{X}; 1^{*+}(\mathsf{j} = 0) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*+}(\mathsf{j} = 1) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*+}(\mathsf{j} = 1) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*+}(\mathsf{j} = 1) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*+}(\mathsf{j} = 2) > \\ \mathsf{J} = 3 \quad |\mathsf{X}; 3^{*+}(\mathsf{j} = 2) > \\ \mathsf{J} = 3 \quad |\mathsf{X}; 3^{*+}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 3 \quad |\mathsf{X}; 3^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 3 \quad |\mathsf{X}; 3^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 3 \quad |\mathsf{X}; 3^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 1) > = \mathbf{0} \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 2^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 3^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 3^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 3^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 3^{*-}(\mathsf{j} = 2) > \\ \mathsf{J} = 2 \quad |\mathsf{X}; 3^{$$

QCD sum rule method

• In sum rule analyses, we consider two-point correlation functions: $\Pi(q^2) \stackrel{\text{def}}{=} i \int d^4 x e^{iqx} \langle 0|T\eta(x)\eta^+(0)|0\rangle$ $\approx \sum_n \langle 0|\eta|n\rangle \langle n|\eta^+|0\rangle$

where η is the current which can couple to hadronic states.

• By using the dispersion relation, we can obtain the spectral density

$$\Pi\left(q^2\right) = \int_{s_<}^\infty \frac{\rho(s)}{s-q^2-i\varepsilon} ds$$

• In QCD sum rule, we can calculate these matrix elements from QCD (OPE) and relate them to observables by using dispersion relation.

Nielsen et al, Phys. Rept. 497, 41 (2010); Albuquerque et al, JPG46, 093002 (2019).

QCD sum rule method

• Borel transformation to suppress the higher order terms:

$$\Pi(M_B^2) \equiv f^2 \, e^{-M^2/M_B^2} = \int_{s_<}^{s_0} e^{-s/M_B^2} \rho(s) ds$$

• Two free parameters

 M_B , s_0

We need to choose certain region of (M_B, s_0) .

Criteria

- 1. Stability
- 2. Convergence of OPE
- 3. Positivity of spectral density
- 4. Sufficient amount of pole contribution

 $G^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g_s f^{abc} A^b_\mu A^c_\nu$

 $J_{1^{-+}}^{\mu} = \overline{s}_a \lambda_n^{ab} \gamma_{\nu} s_b g_s G_n^{\mu\nu}$

$$J_{1^{-+}}^{\mu} = \overline{s}_a \lambda_n^{ab} \gamma_{\nu} s_b g_s G_n^{\mu\nu}$$

$$\begin{split} \Pi_{1^{-+}}^{\mu} \left(M_B^2, s_0 \right) \\ &= \int_{4m_s^2}^{s_0} \left(\frac{s^3 \alpha_s}{60\pi^3} - \frac{m_s^2 s^2 \alpha_s}{3\pi^3} + s \left(\frac{\langle \alpha_s GG \rangle}{36\pi^2} \right. \right. \\ &\left. + \frac{13 \left\langle \alpha_s GG \right\rangle \alpha_s}{432\pi^3} + \frac{8m_s \left\langle \bar{s}s \right\rangle \alpha_s}{9\pi} \right) + \frac{\langle g_s^3 G^3 \rangle}{32\pi^2} \\ &\left. - \frac{3 \left\langle \alpha_s GG \right\rangle m_s^2 \alpha_s}{64\pi^3} - \frac{3m_s \left\langle g_s \bar{s}\sigma Gs \right\rangle \alpha_s}{4\pi} \right) \times e^{-s/M_B^2} ds \\ &+ \left(\frac{\langle \alpha_s GG \rangle^2}{3456\pi^2} - \frac{\langle g_s^3 G^3 \rangle m_s^2}{16\pi^2} - \frac{2}{9} \left\langle \alpha_s GG \right\rangle m_s \left\langle \bar{s}s \right\rangle \\ &\left. + \frac{11\pi \left\langle \bar{s}s \right\rangle \left\langle g_s \bar{s}\sigma Gs \right\rangle \alpha_s}{9} \right). \end{split}$$

$$J_{1^{-+}}^{\mu} = \overline{s}_a \lambda_n^{ab} \gamma_{\nu} s_b g_s G_n^{\mu\nu}$$

$$\begin{aligned} \text{CVG}_A &\equiv \left| \frac{\Pi^{g_s^{n=4}}(\infty, M_B^2)}{\Pi(\infty, M_B^2)} \right| \leq 5\% \\ \text{CVG}_B &\equiv \left| \frac{\Pi^{\text{D}=6+8}(\infty, M_B^2)}{\Pi(\infty, M_B^2)} \right| \leq 10\% \end{aligned}$$

$$PC \equiv \left| \frac{\Pi(s_0, M_B^2)}{\Pi(\infty, M_B^2)} \right| \ge 40\%$$

$$M_{|\bar{s}sg;1^{-+}\rangle} = 1.84^{+0.14}_{-0.15} \text{ GeV}$$
$$f_{|\bar{s}sg;1^{-+}\rangle} = 0.30^{+0.06}_{-0.06} \text{ GeV}^4$$

QCD sum rule results: Single-gluon hybrid states

State $[I^{PC}]$	Current	e^{min} [CoV ²]	Working	Regions	Pole [%]	Mass [CoV]	Decay Constant
	Ourrent		$M_B^2 \; [{ m GeV}^2]$	$s_0 \; [{ m GeV}^2]$			Decay Constant
$ \bar{q}qg;1^{}\rangle$	$J_{1^{}}^{lphaeta}$	4.2	2.03 – 2.48	5.5	40-54	$1.80\substack{+0.13 \\ -0.16}$	$0.051^{+0.004}_{-0.004}~{\rm GeV^3}$
$ \bar{q}qg;1^{+-} angle$	$ ilde{J}_{1^{+-}}^{lphaeta}$	16.2	3.61 - 4.58	18.0	40 - 53	$4.05_{-0.12}^{+0.24}$	$0.063^{+0.020}_{-0.020}~{\rm GeV^3}$
$ \bar{q}qg;1^{+-} angle$	$J_{1^{+-}}^{lphaeta}$	5.0	2.29 – 2.45	5.5	40 - 45	$1.84^{+0.12}_{-0.14}$	$0.049^{+0.004}_{-0.004}~{\rm GeV^3}$
$ \bar{q}qg;1^{} angle$	$ ilde{J}_{1^{}}^{lphaeta}$	16.3	3.52 – 4.56	18.0	40 - 53	$4.09\substack{+0.29 \\ -0.14}$	$0.064^{+0.021}_{-0.020}~{\rm GeV^3}$
$ ar{q}qg;0^{++} angle$	$J_{1^{-+}}^{\mu \to 0}$	20.6	5.11 – 6.59	24.0	40 - 56	$4.45_{-0.17}^{+0.22}$	$0.124^{+0.032}_{-0.036}~{\rm GeV^3}$
$ ar{q}qg;0^{-+} angle$	$\tilde{J}_{1^{++}}^{\mu \to 0}$	7.7	3.58 – 3.81	8.5	40 - 45	$2.14\substack{+0.17 \\ -0.19}$	$0.105^{+0.005}_{-0.004}~{\rm GeV^3}$
$ ar{q}qg;0^{} angle$	$J_{1^{+-}}^{\mu ightarrow 0}$	21.6	5.48 – 6.52	24.0	40 - 50	$4.49^{+0.21}_{-0.14}$	$0.123^{+0.032}_{-0.037} { m ~GeV^3}$
$ ar{q}qg;0^{+-} angle$	$ ilde{J}_{1^{}}^{\mu ightarrow 0}$	7.1	3.32 – 3.73	8.5	40 - 49	$2.16\substack{+0.16 \\ -0.19}$	$0.100^{+0.005}_{-0.005}~{\rm GeV^3}$
$ \bar{q}qg;1^{-+}\rangle$	$J^{\mu}_{1^{-+}}$	4.8	2.19 – 2.28	5.2	40 - 43	$1.67\substack{+0.15 \\ -0.17}$	$0.243^{+0.057}_{-0.052} \ {\rm GeV^4}$
$ \bar{q}qg;1^{++} angle$	${ ilde J}^{\mu}_{1^{++}}$	13.8	3.59 – 4.10	15.0	40 - 48	$3.54^{+0.16}_{-0.12}$	$1.370^{+0.494}_{-0.450} { m ~GeV^4}$
$ \bar{q}qg;1^{+-} angle$	$J^{\mu}_{1^{+-}}$	4.6	2.10 – 2.27	5.2	40 - 46	$1.68\substack{+0.14 \\ -0.16}$	$0.242^{+0.055}_{-0.051} { m ~GeV^4}$
$ \bar{q}qg;1^{} angle$	$ ilde{J}^{\mu}_{1^{}}$	13.7	3.57 – 4.10	15.0	40 - 49	$3.53\substack{+0.16 \\ -0.12}$	$1.366^{+0.493}_{-0.450} { m GeV}^4$
$ ar{q}qg;0^{++} angle$	$J_{0^{++}}$	11.1	3.48 – 3.91	12.5	40 - 49	$2.94\substack{+0.20 \\ -0.25}$	$2.893^{+1.029}_{-0.948}~{\rm GeV^4}$
$ \bar{q}qg;0^{-+} angle$	$J_{0^{-+}}$	11.1	3.47 – 3.92	12.5	40 - 49	$2.93\substack{+0.20 \\ -0.25}$	$2.882^{+1.026}_{-0.945} \ {\rm GeV^4}$
$ \bar{q}qg;1^{++} angle$	$J_{1^{++}}^{lphaeta}$	5.8	1.84 – 2.06	6.5	40 - 48	$2.11\substack{+0.17 \\ -0.21}$	$0.056^{+0.012}_{-0.013}~{\rm GeV^3}$
$ \bar{q}qg;1^{-+}\rangle$	$ ilde{J}_{1^{-+}}^{lphaeta}$	5.5	1.81 – 2.00	6.2	40-48	$2.00\substack{+0.13 \\ -0.16}$	$0.055^{+0.007}_{-0.008}~{\rm GeV^3}$
$ \bar{q}qg;1^{-+}\rangle$	$J_{1^{-+}}^{lphaeta}$	5.5	1.81 – 2.00	6.2	40 - 48	$2.00\substack{+0.13 \\ -0.16}$	$0.055^{+0.007}_{-0.008}~{\rm GeV^3}$
$ ar{q}qg;1^{++} angle$	$ ilde{J}_{1^{++}}^{lphaeta}$	5.8	1.84 – 2.06	6.5	40-48	$2.11\substack{+0.17 \\ -0.21}$	$0.056^{+0.012}_{-0.013}~{\rm GeV^3}$

QCD sum rule results: Double-gluon hybrid states

State [IPC]	Current	a^{min} [C aV^2]	Working Regions		Polo [%]	Mass [CoV]	
	Current	$s_0 [\text{Gev}]$	$M_B^2 \; [{ m GeV}^2]$	$s_0 \; [{ m GeV}^2]$			
$ ar{q}qgg;0^{++} angle$	$J_{0^{++}}$	34.9	6.12 – 6.92	38 ± 8.0	40–50	$5.61^{+0.29}_{-0.27}$	
$ ar{q}qgg;0^{-+} angle$	$J_{0^{-+}}$	24.4	5.34 – 5.78	27 ± 5.0	40 - 48	$4.25_{-0.39}^{+0.32}$	
$ ar{q}qgg;1^{+-} angle$	$J_{1^{+-}}^{lphaeta}$	32.1	5.51 - 6.31	35 ± 7.0	40 - 50	$5.46_{-0.18}^{+0.25}$	
$ ar{q}qgg;1^{} angle$	$J_{1^{}}^{lphaeta}$	20.0	4.60-4.91	22 ± 4.0	40 - 47	$3.74_{-0.35}^{+0.30}$	
$ ar{q}qgg;2^{++} angle$	$J_{2^{++}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	20.0	5.39 – 5.76	22 ± 4.0	40 - 46	$3.74_{-0.32}^{+0.27}$	
$ ar{q}qgg;2^{+-} angle$	$J_{2^{+-}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	6.4	1.61 – 1.78	7 ± 2.0	40–48	$2.26\substack{+0.20 \\ -0.25}$	
$ ar{q}qgg;2^{-+} angle$	$J_{2^{-+}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	16.8	4.39-4.81	19 ± 4.0	40–49	$3.51\substack{+0.29 \\ -0.35}$	
$ \bar{s}sgg;0^{++} angle$	$J_{0^{++}}$	35.3	6.22 - 7.61	41 ± 8.0	40-57	$5.72^{+0.29}_{-0.32}$	
$ \bar{s}sgg;0^{-+} angle$	$J_{0^{-+}}$	24.5	5.36 - 5.95	28 ± 6.0	40 - 50	$4.34_{-0.46}^{+0.36}$	
$ \bar{s}sgg;1^{+-} angle$	$J_{1^{+-}}^{lphaeta}$	32.5	5.60 - 6.79	37 ± 8.0	40 - 55	$5.52^{+0.29}_{-0.27}$	
$ \bar{s}sgg;1^{}\rangle$	$J_{1^{}}^{lphaeta}$	20.2	4.62 - 5.07	23 ± 5.0	40 - 50	$3.84\substack{+0.35\\-0.44}$	
$ \bar{s}sgg;2^{++}\rangle$	$J_{2^{++}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	20.4	5.45 - 6.11	24 ± 5.0	40 - 51	$3.91\substack{+0.32 \\ -0.39}$	
$ \bar{s}sgg;2^{+-} angle$	$J_{2^{+-}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	7.1	1.79 – 2.01	8 ± 2.0	40 - 50	$2.38\substack{+0.19 \\ -0.25}$	
$ \bar{s}sgg;2^{-+}\rangle$	$J_{2^{-+}}^{\alpha_1\beta_1,\alpha_2\beta_2}$	17.1	4.44 – 5.00	20 ± 4.0	40 - 51	$3.61^{+0.28}_{-0.34}$	

QCD sum rule results: Two- and three-gluon glueballs

Cluchall	Current	$c^{min} [C_0 V^2]$	Working Regions		Polo [%]	Mass [CoV]
Giuebali	Current	$s_0 [Gev]$	$s_0 \; [{\rm GeV}^2]$	$M_B^2 \ [{ m GeV^2}]$		
$ \mathrm{GG};0^{++} angle$	J_0	7.8	9.0 ± 1.0	3.70-4.19	40-48	$1.78_{-0.17}^{+0.14}$
$ \mathrm{GG};2^{++}\rangle$	$J_2^{\alpha_1\alpha_2,\beta_1\beta_2}$	8.5	10.0 ± 1.0	3.99 - 4.60	40-50	$1.86_{-0.17}^{+0.14}$
$ { m GG};0^{-+} angle$	\widetilde{J}_0	8.2	9.0 ± 1.0	3.28 - 3.70	40-47	$2.17\substack{+0.11 \\ -0.11}$
$ \mathrm{GG};2^{-+}\rangle$	$\tilde{J}_2^{\alpha_1\alpha_2,\beta_1\beta_2}$	8.1	10.0 ± 1.0	3.27 - 4.20	40 - 55	$2.24_{-0.11}^{+0.11}$
$ { m GGG};0^{++} angle$	η_0	31.6	33.0 ± 3.0	7.25 - 7.61	40-44	$4.46_{-0.19}^{+0.17}$
$ \mathrm{GGG};2^{++}\rangle$	$\eta_2^{\alpha_1\alpha_2,\beta_1\beta_2}$	16.0	35.0 ± 3.0	4.77 - 9.04	40-90	$4.18\substack{+0.19 \\ -0.42}$
$ {\rm GGG};0^{-+}\rangle$	$ ilde\eta_0$	17.0	33.0 ± 3.0	4.48-8.13	40-88	$4.13_{-0.36}^{+0.18}$
$ \mathrm{GGG};2^{-+}\rangle$	$\tilde{\eta}_2^{lpha_1lpha_2,eta_1eta_2}$	33.1	35.0 ± 3.0	8.10 - 8.53	40-44	$4.29\substack{+0.20 \\ -0.22}$
$ \text{GGG};1^{+-}\rangle$	$\xi_1^{lphaeta}$	9.0	34.0 ± 4.0	3.16-9.09	40–99	$4.01\substack{+0.26 \\ -0.95}$
$ \mathrm{GGG};2^{+-}\rangle$	$\xi_2^{\alpha_1\alpha_2,\beta_1\beta_2}$	32.7	35.0 ± 4.0	7.53 - 8.09	40-46	$4.42_{-0.29}^{+0.24}$
$ \mathrm{GGG};3^{+-}\rangle$	$\xi_3^{\alpha_1\alpha_2\alpha_3,\beta_1\beta_2\beta_3}$	30.2	33.0 ± 4.0	7.69 - 8.40	40-47	$4.30_{-0.26}^{+0.23}$
$ \mathrm{GGG};1^{}\rangle$	$ ilde{\xi}_1^{lphaeta}$	31.2	34.0 ± 4.0	5.81 - 6.77	40-51	$4.91\substack{+0.20 \\ -0.18}$
$ \mathrm{GGG};2^{}\rangle$	$ ilde{\xi}_2^{lpha_1lpha_2,eta_1eta_2}$	19.7	36.0 ± 4.0	5.80 - 9.47	40-81	$4.25_{-0.33}^{+0.22}$
$ \text{GGG};3^{}\rangle$	$\tilde{\xi}_3^{\alpha_1\alpha_2\alpha_3,\beta_1\beta_2\beta_3}$	35.8	38.0 ± 4.0	6.15 - 7.22	40-49	$5.59^{+0.33}_{-0.22}$

Lattice QCD results

			quenched		unquenched
Glueball	QCD sum rules	Ref. [11]	Ref. [12]	Ref. [13]	Ref. [14]
$ \mathrm{GG};0^{++}\rangle$	$1.78^{+0.14}_{-0.17}$	$1.71 \pm 0.05 \pm 0.08$	$1.73 \pm 0.05 \pm 0.08$	$1.48 \pm 0.03 \pm 0.07$	1.80 ± 0.06
$ \mathrm{GG};2^{++}\rangle$	$1.86_{-0.17}^{+0.14}$	$2.39 \pm 0.03 \pm 0.12$	$2.40 \pm 0.03 \pm 0.12$	$2.15 \pm 0.03 \pm 0.10$	2.62 ± 0.05
$ { m GG};0^{-+} angle$	$2.17\substack{+0.11 \\ -0.11}$	$2.56 \pm 0.04 \pm 0.12$	$2.59 \pm 0.04 \pm 0.13$	$2.25 \pm 0.06 \pm 0.10$	-
$ \mathrm{GG};2^{-+}\rangle$	$2.24_{-0.11}^{+0.11}$	$3.04 \pm 0.04 \pm 0.15$	$3.10 \pm 0.03 \pm 0.15$	$2.78 \pm 0.05 \pm 0.13$	3.46 ± 0.32
$ \mathrm{GGG};0^{++}\rangle$	$4.46_{-0.19}^{+0.17}$	_	$2.67 \pm 0.18 \pm 0.13$	$2.76 \pm 0.03 \pm 0.12$	3.76 ± 0.24
$ \mathrm{GGG};2^{++}\rangle$	$4.18_{-0.42}^{+0.19}$			$2.88 \pm 0.10 \pm 0.13$	-
$ { m GGG};0^{-+} angle$	$4.13_{-0.36}^{+0.18}$	-	$3.64 \pm 0.06 \pm 0.18$	$3.37 \pm 0.15 \pm 0.15$	4.49 ± 0.59
$ \mathrm{GGG};2^{-+}\rangle$	$4.29_{-0.22}^{+0.20}$	-	_	$3.48 \pm 0.14 \pm 0.16$	-
$ \text{GGG};1^{+-}\rangle$	$4.01\substack{+0.26 \\ -0.95}$	$2.98 \pm 0.03 \pm 0.14$	$2.94 \pm 0.03 \pm 0.14$	$2.67 \pm 0.07 \pm 0.12$	3.27 ± 0.34
$ \mathrm{GGG};2^{+-}\rangle$	$4.42_{-0.29}^{+0.24}$	$4.23 \pm 0.05 \pm 0.20$	$4.14 \pm 0.05 \pm 0.20$	—	-
$ \mathrm{GGG};3^{+-}\rangle$	$4.30_{-0.26}^{+0.23}$	$3.60 \pm 0.04 \pm 0.17$	$3.55 \pm 0.04 \pm 0.17$	$3.27 \pm 0.09 \pm 0.15$	3.85 ± 0.35
$ \text{GGG};1^{}\rangle$	$4.91\substack{+0.20 \\ -0.18}$	$3.83 \pm 0.04 \pm 0.19$	$3.85 \pm 0.05 \pm 0.19$	$3.24 \pm 0.33 \pm 0.15$	-
$ \text{GGG};2^{}\rangle$	$4.25_{-0.33}^{+0.22}$	$4.01 \pm 0.05 \pm 0.20$	$3.93 \pm 0.04 \pm 0.19$	$3.66 \pm 0.13 \pm 0.17$	4.59 ± 0.74
$ \text{GGG};3^{}\rangle$	$5.59^{+0.33}_{-0.22}$	$4.20 \pm 0.05 \pm 0.20$	$4.13 \pm 0.09 \pm 0.20$	$4.33 \pm 0.26 \pm 0.20$	-

Contents

• Present status of hadron spectroscopy

• QCD sum rule studies on hybrid states

Decay analyses on hybrid states

• Studies on the $J^{PC} = 1^{-+}$ hybrid states

Decay analyses

Decay analyses – Glueball

		A
GGG>	000000000000000000000000000000000000000	B
		C

$0^{-+} \rightarrow$	VVP, VVV	(S-wave)
$0^{++} \rightarrow$	VPP, VVP, VVV	(P-wave)
$1^{} \rightarrow$	VPP, VVP, VVV	(S-wave)
$1^{+-} \rightarrow$	PPP, VPP, VVP, VVV	(P-wave)
$2^{-\pm} \rightarrow$	VVP, VVV	(S-wave)
$2^{+\pm} \rightarrow$	VPP, VVP, VVV	(P-wave)
$3^{} \rightarrow$	\overline{VVV}	(S-wave)
$3^{+-} \rightarrow$	VVP, VVV	(P-wave)

Decay analyses – Hybrid

The QCD axial anomaly ensures the $\eta\eta'$ decay mode to be a characteristic signal of the hybrid nature of the $\eta_1(1855)$.

Decay results $-J^{PC} = 1^{-+}$ Hybrid

Channel	$ \bar{q}qg;1^{-}1^{-+} angle$	$ ar{q}qg;0^+1^{-+} angle$	$ \bar{s}sg;0^+1^{-+}\rangle$
Chaimer	$M = 1.67^{+0.15}_{-0.17} \text{ GeV}$	$M = 1.67^{+0.15}_{-0.17} \text{ GeV}$	$M = 1.84^{+0.14}_{-0.15} \text{ GeV}$
$\pi_1/\eta_1 o ho\pi$	242_{-179}^{+310}	_	_
$\pi_1/\eta_1 \to b_1(1235)\pi$	$14.5^{+25.9}_{-13.9}$	—	—
$\pi_1/\eta_1 \to f_1(1285)\pi$	$35.9^{+53.9}_{-36.4}$	_	_
$\pi_1/\eta_1 o \eta\pi$	$2.3^{+2.5}_{-1.2}$	_	—
$\pi_1/\eta_1 \stackrel{b}{ ightarrow} \eta\pi$	$57.8^{+65.0}_{-31.4}$	_	_
$\pi_1/\eta_1 o \eta' \pi$	$0.43\substack{+0.50 \\ -0.28}$	—	—
$\pi_1/\eta_1 \stackrel{c}{ ightarrow} \eta'\pi$	149^{+162}_{-78}	—	_
$\pi_1/\eta_1 \to a_1(1260)\pi$	—	$79.5^{+112.4}_{-74.9}$	—
$\pi_1/\eta_1 \stackrel{a}{ ightarrow} \eta\eta'$	—	$0.07\substack{+0.12 \\ -0.07}$	$0.93\substack{+1.04 \\ -0.69}$
$\pi_1/\eta_1 \stackrel{b}{ ightarrow} \eta\eta'$	_	$1.62^{+2.13}_{-1.61}$	$1.64^{+1.51}_{-1.01}$
$\pi_1/\eta_1 \stackrel{c}{ ightarrow} \eta\eta'$	_	$11.5^{+11.7}_{-11.5}$	$5.0^{+4.6}_{-3.1}$
$\pi_1/\eta_1 \to K^*(892)\bar{K} + c.c.$	$25.3^{+34.7}_{-24.7}$	$25.3^{+34.7}_{-24.7}$	$73.9^{+85.7}_{-58.0}$
$\pi_1/\eta_1 \to K_1(1270)\bar{K} + c.c.$	—	—	$14.6^{+19.8}_{-14.6}$
$\pi_1/\eta_1 \to K^*(892)\bar{K}^*(892)$	—	—	$0.08\substack{+0.39 \\ -0.08}$
Sum	530^{+540}_{-330}	120^{+160}_{-110}	100^{+110}_{-80}

Contents

• Present status of hadron spectroscopy

- QCD sum rule studies on hybrid states
- Decay analyses on hybrid states

• Studies on the $J^{PC} = 1^{-+}$ hybrid states

$$J^{PC} = 1^{-+}$$
 Hybrid

 $I^{G}J^{PC} = 1^{-}1^{-+}: \pi_{1}(1400) \quad \pi_{1}(1600) \quad \pi_{1}(2015) \qquad \qquad I^{G}J^{PC} = 0^{+}1^{-+}: \eta_{1}(1855)$

$$J^{PC} = \mathbf{1}^{-+}$$
 Hybrid

$$J^{PC} = \mathbf{1}^{-+}$$
 Hybrid

Theory (q = up/down, s = strange)

Hybrid picture:

- > One isovector: $\overline{q}qg$
- > Two isosinglets: $\overline{q}qg$, $\overline{s}sg$

Compact tetraquark picture:

- > Two isovectors: $\overline{q}\overline{q}qq$, $\overline{q}\overline{s}qs$
- > Three isosinglets: $\overline{q}\overline{q}qq$, $\overline{q}\overline{s}qs$, $\overline{s}\overline{s}ss$

Hadronic molecular picture:

- Maybe not as many states as the tetraquark picture
- Near thresholds
- Widths are possibly limited

$$J^{PC} = \mathbf{1}^{-+}$$
 Hybrid

Decay results $-J^{PC} = 1^{-+}$ Hybrid

Channel	$ \bar{q}qg;1^{-}1^{-+} angle$	$ \bar{q}qg;0^+1^{-+} angle$	$ \bar{s}sg;0^+1^{-+}\rangle$
Chaimer	$M = 1.67^{+0.15}_{-0.17} \text{ GeV}$	$M = 1.67^{+0.15}_{-0.17} \text{ GeV}$	$M = 1.84^{+0.14}_{-0.15} \text{ GeV}$
$\pi_1/\eta_1 o ho\pi$	242_{-179}^{+310}	_	_
$\pi_1/\eta_1 \to b_1(1235)\pi$	$14.5^{+25.9}_{-13.9}$	—	—
$\pi_1/\eta_1 \to f_1(1285)\pi$	$35.9^{+53.9}_{-36.4}$	_	_
$\pi_1/\eta_1 o \eta\pi$	$2.3^{+2.5}_{-1.2}$	_	—
$\pi_1/\eta_1 \stackrel{b}{ ightarrow} \eta\pi$	$57.8^{+65.0}_{-31.4}$	_	—
$\pi_1/\eta_1 o \eta' \pi$	$0.43\substack{+0.50 \\ -0.28}$	_	_
$\pi_1/\eta_1 \stackrel{c}{ ightarrow} \eta'\pi$	149^{+162}_{-78}	—	—
$\pi_1/\eta_1 \to a_1(1260)\pi$	—	$79.5^{+112.4}_{-74.9}$	—
$\pi_1/\eta_1 \stackrel{a}{ ightarrow} \eta\eta'$	—	$0.07\substack{+0.12 \\ -0.07}$	$0.93\substack{+1.04 \\ -0.69}$
$\pi_1/\eta_1 \stackrel{b}{ ightarrow} \eta\eta'$	—	$1.62^{+2.13}_{-1.61}$	$1.64^{+1.51}_{-1.01}$
$\pi_1/\eta_1 \xrightarrow{c} \eta\eta'$	_	$11.5^{+11.7}_{-11.5}$	$5.0^{+4.6}_{-3.1}$
$\pi_1/\eta_1 \to K^*(892)\bar{K} + c.c.$	$25.3^{+34.7}_{-24.7}$	$25.3^{+34.7}_{-24.7}$	$73.9^{+85.7}_{-58.0}$
$\pi_1/\eta_1 \to K_1(1270)\bar{K} + c.c.$	_	_	$14.6^{+19.8}_{-14.6}$
$\pi_1/\eta_1 \to K^*(892)\bar{K}^*(892)$	_	_	$0.08\substack{+0.39 \\ -0.08}$
Sum	530^{+540}_{-330}	120^{+160}_{-110}	100^{+110}_{-80}

Summary

- We systematically study two- and three-gluon glueballs as well as single-gluon and double-gluon hybrid states through QCD sum rule method.
- The $J^{PC} = 1^{-+}$ hybrid states are still of particular interest. We propose to investigate the $a_1(1260)\pi$ channel in future experiments to further understand $\eta_1(1855)$.

Thank you very much!