

Charm mixing and indirect CPV studies at STCF

Ying-Hao Wang¹ , Yu Zhang² , Ying-Rui Hou³ , Pei-Rong Li¹ Xiao-Rui Lyu³ ,Yang-Heng Zheng³

¹LZU ²USC ³UCAS

超级陶粲装置研讨会,兰州,09/07/2024

- ⚫ Charm mixing and indirect CPV
- ⚫ Time-integrated measurement
- ⚫ Sensitivity study with STCF
- ⚫ Summary and future plan

First observation of neutral meson mixing in K^0 mesons.

Evidence for a Long-Lived Neutral Unstable Particle*

W. F. FRY, J. SCHNEPS, AND M. S. SWAMI Department of Physics, University of Wisconsin, Madison, Wisconsin

SEARCH FOR B⁰-B⁰ OSCILLATIONS AT THE CERN **PROTON-ANTIPROTON COLLIDER**

UA1 Collaboration, CERN, Geneva, Switzerland

- ⚫ Mixing amplitudes governed by two contributions:
	- Short distance:
		- \checkmark Via box diagrams, $(x, y) \sim 10^{-7}$
		- \checkmark Suppressed by GIM cancellation

- Long distance:
	- \checkmark re-scattering diagram, $(x, y) \sim 10^{-3}$
	- \checkmark Theoretical prediction of x and y very challenging

Plots from arXiv:1503.00032

Charm mixing

• Mass eigenstates of D^0 and \overline{D}^0 mesons can be written as superpositions of flavor eigenstates: $|D_{1,2}\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$ $|p|^2 + |q|^2 = 1$

• Time evolution of a initially flavor eigenstates of D^0 and \overline{D}^0 mesons:

$$
\left| D_{phys}^{0}(t) \right\rangle = g_{+}(t) \left| D^{0} \right\rangle + \frac{q}{p} g_{-}(t) \left| \overline{D}^{0} \right\rangle \n\qquad g_{+}(t) = \exp \left(- (im + \frac{\Gamma}{2})t \right) \cosh \left((i \Delta m - \frac{\Delta \Gamma}{2}) \frac{t}{2} \right) \n\qquad m \equiv \frac{m_{1} + m_{2}}{2}, \Delta m \equiv m_{2} - m_{1}
$$
\n
$$
\left| \overline{D}_{phys}^{0}(t) \right\rangle = g_{+}(t) \left| \overline{D}^{0} \right\rangle + \frac{q}{p} g_{-}(t) \left| D^{0} \right\rangle \n\qquad g_{-}(t) = \exp \left(- (im + \frac{\Gamma}{2})t \right) \sinh \left((i \Delta m - \frac{\Delta \Gamma}{2}) \frac{t}{2} \right) \n\qquad \qquad \Gamma \equiv \frac{\Gamma_{1} + \Gamma_{2}}{2}, \Delta \Gamma \equiv \Gamma_{1} - \Gamma_{2}
$$

⚫ Practically, it is more popular to use the following two dimensionless parameters for describing D^0 - $\overline{D}{}^0$ mixing:

$$
x \equiv \frac{\Delta m}{\Gamma}, y \equiv \frac{\Delta \Gamma}{2\Gamma}
$$

Indirect charm CPV

● CPV in mixing:

Probability of $|D_{phy}^{0}(t)\rangle \rightarrow |\overline{D}^{0}\rangle \neq |\overline{D}_{phy}^{0}(t)\rangle \rightarrow |D^{0}\rangle$: $|q/p| \neq 1$.

● CPV in mixing/decay interference:

Non-vanishing ϕ for $\frac{q}{r}$ \overline{p} = \overline{q} \overline{p} $e^{i\phi}$.

Decay rates: $R(D_{\text{phys}}^0(t) \to f) \propto |A_f|^2 \exp(-\Gamma t) [1 + \frac{1}{4}(x_D^2 + y_D^2)|\lambda_f|^2 \Gamma^2 t^2]$ $-\frac{1}{4}(x_D^2-y_D^2)\Gamma^2t^2-(y_D\text{Re}\lambda_f+x_D\text{Im}\lambda_f)\Gamma t]$ \boldsymbol{q} $e^{-i(\delta_f+\phi)}$ Phys. Rev. D 55 (1997) 196 $\lambda_f=r_f$ \boldsymbol{p}

⚫ Currently, the mixing and CPV parameters are usually measured with the timedependent analysis in B factory.

Phys. Rev. D 15 (1977) 1254

• $D^0\overline{D}^0$ pairs produced by e^+e^- annihilations near threshold are in quantum correlated state with $C =$ $(-1)^{n+1}$.

⚫ @3770 MeV

• $C = -1, e^+e^- \rightarrow D^0\overline{D}^0$

 \bullet @>4009 MeV

- $C = +1$ for $e^+e^- \to D^{*0}\overline{D}^0 + c$. c, $D^{*0} \to \gamma D^0$
- $C = -1$ for $e^+e^- \to D^{*0}\overline{D}^0 + c$. $c, D^{*0} \to \pi^0 D^0$

Exploring the QC in $D^0\overline{D}^0$ allows to extract the mixing and CPV parameters with timeintegrated decay rates.

$$
W(f_1, f_2) = 3(x^2 + y^2)(|\lambda_{D^0}|^2 + |\lambda_{\overline{D}^0}|^2 + 2R_{D^0}R_{\overline{D}^0}\lambda_{D^0}\lambda_{\overline{D}^0})
$$

+ (2 - 3(x² - y²))(1 + 2R_{D^0}R_{\overline{D}^0}Re(\lambda_{D^0}\lambda_{\overline{D}^0}) + |\lambda_{D^0}\lambda_{\overline{D}^0}|^2
-4y[R_{\overline{D}^0}(1 + |\lambda_{D^0}|^2)Re(\lambda_{\overline{D}^0}) + R_{D^0}(1 + |\lambda_{\overline{D}^0}|^2)Re(\lambda_{D^0})]
\t\t-4x[R_{\overline{D}^0}(1 - |\lambda_{D^0}|^2)Im(\lambda_{\overline{D}^0}) + R_{D^0}(1 - |\lambda_{\overline{D}^0}|^2)Im(\lambda_{D^0})]

$$
W(f_1, f_2) = (x^2 + y^2)(|\lambda_{D^0}|^2 + |\lambda_{\overline{D}^0}|^2 - 2R_{D^0}R_{\overline{D}^0}\text{Re}(\lambda_{D^0}\lambda_{\overline{D}^0}))
$$

= -1 + (2 - (x^2 - y^2))(1 - 2R_{D^0}R_{\overline{D}^0}\text{Re}(\lambda_{D^0}\lambda_{\overline{D}^0}) + |\lambda_{D^0}\lambda_{\overline{D}^0}|^2)

 \overline{c}

⚫ -even quantum correlation samples are better at measuring mixing and CPV parameters.

 $\big)$

Fake data study at STCF

- \bullet $E_{cms} = 4009$ MeV, 4015 MeV and 4030 MeV, $\int L = 1$ ab⁻¹ for each energy point.
- Coherent samples: $e^+e^- \rightarrow D^{*0}\overline{D}^0 + c$. c. and $e^+e^- \rightarrow D^{*0}\overline{D}^{*0}$.
- Incoherent samples: $e^+e^- \rightarrow D^{*+}D^- + c.c.$ and $e^+e^- \rightarrow D^{*+}D^{*-}$.
- ⚫ Sim and reconstruction framework is based on FastSim software.

QC correction for MC samples

- QCMC package is developed for both $C odd/even D^0\overline{D}^0$.
- ⚫ For each event, QC weight is determined by the ratio of decay rate with or without QC effect.
- ⚫ Input of amplitude models for multibody decays, mixing and CPV parameters from HFLAV.

$$
\begin{aligned}\n\mathbf{C}\text{-even} \quad \bullet \quad W(f_1, f_2) &= 3(x^2 + y^2)(|\lambda_{D^0}|^2 + |\lambda_{\overline{D}^0}|^2 + 2R_{D^0}R_{\overline{D}^0}\lambda_{D^0}\lambda_{\overline{D}^0}) \\
&\quad + (2 - 3(x^2 - y^2))(1 + 2R_{D^0}R_{\overline{D}^0}\text{Re}(\lambda_{D^0}\lambda_{\overline{D}^0}) + |\lambda_{D^0}\lambda_{\overline{D}^0}|^2) \\
&\quad - 4y[R_{\overline{D}^0}(1 + |\lambda_{D^0}|^2)\text{Re}(\lambda_{\overline{D}^0}) + R_{D^0}(1 + |\lambda_{\overline{D}^0}|^2)\text{Re}(\lambda_{D^0})] \\
&\quad - 4x[R_{\overline{D}^0}(1 - |\lambda_{D^0}|^2)\text{Im}(\lambda_{\overline{D}^0}) + R_{D^0}(1 - |\lambda_{\overline{D}^0}|^2)\text{Im}(\lambda_{D^0})]\n\end{aligned}
$$

•
$$
W(f_1, f_2) = (x^2 + y^2)(|\lambda_{D^0}|^2 + |\lambda_{\overline{D}^0}|^2 - 2R_{D^0}R_{\overline{D}^0}Re(\lambda_{D^0}\lambda_{\overline{D}^0}))
$$

 $+ (2 - (x^2 - y^2))(1 - 2R_{D^0}R_{\overline{D}^0}Re(\lambda_{D^0}\lambda_{\overline{D}^0}) + |\lambda_{D^0}\lambda_{\overline{D}^0}|^2)$

Analysis strategy: signal modes

- Decay modes: $D^0 \to K\pi\pi\pi$, $K\pi\pi^0$ and $K_S\pi\pi$.
- ⚫ For the coherent samples, the double tag method is performed.
	- Flavor tag: $K\pi\pi\pi$, $K\pi\pi^0$, $K\pi$ (like-sign and opposite sign for $Kn\pi$).
	- CP-even tag: KK , $\pi\pi$, $\pi\pi\pi^0$, $K_S\pi^0\pi^0$.
	- CP-odd tag: $K_S \pi^0$, $K_S \eta$, $K_S \omega$, $K \eta'$.
	- Self-conjugate tag: $K_s \pi \pi$.
- ⚫ For the incoherent samples, the flavor tag method is adopted.

Analysis strategy: fitting method of coherent sample

• The charm mixing parameters are extracted in a ratio between C-even and C-odd $D^0\overline{D}$ production processes. R^{C-even}

In quantum correlations:

$$
N_{sig}^{C-even} = N_{D^{*0}\overline{D}^0} \overbrace{R^{C-even}}^{P^{*0}\rightarrow D^{0}\gamma} \cdot \varepsilon_{sig}
$$

decay rate

$$
N_{sig}^{C-odd} = N_{D^{*0}\overline{D}^{0}} \cdot \overbrace{R^{C-odd}}^{GC-odd} B(D^{*0} \to D^{0}\pi^{0}) \cdot \varepsilon_{sig}
$$

$$
\frac{N_{sig}^{C-even}}{N_{sig}^{C-odd}} = \frac{R^{C-even} \cdot B(D^{*0} \to D^0 \gamma)}{R^{C-odd} \cdot B(D^{*0} \to D^0 \pi^0)}
$$

• This will cancel the reconstruction efficiencies
and the number of
$$
D^0\overline{D}^0
$$
 pairs.

- ⚫ Cancel out some systematic uncertainty.
- Similar treatment in $D^{*0} \overline{D}^{*0}$ sample.

$$
(K^-\pi^+\pi^-\pi^+; K^+\pi^-) \propto A_{K3\pi}^2 A_{K\pi}^2 \{3(x^2+y^2)[K_i(r_{CP}^{-1})^2(r_D^{K\pi})^2 + \bar{K}_i(r_{CP})^2(r_D^{K3\pi})^2
$$

+ $2\sqrt{K_i \bar{K}_i} R_{K3\pi}^i r_D^{K3\pi} r_D^{K\pi} \cos(\delta_D^{i,K3\pi} - \delta_D^{K\pi} - 2\phi)]$
+ $[2 - 3(x^2 - y^2)][K_i + \bar{K}_i(r_D^{K\pi})^2(r_D^{K3\pi})^2$
+ $2\sqrt{K_i \bar{K}_i} r_D^{K\pi} R_{K3\pi}^i r_D^{K3\pi} \cos(\delta_D^{i,K3\pi} + \delta_D^{K\pi})]$
- $4y[r_D^{K\pi}(K_i r_{CP}^{-1} + \bar{K}_i r_{CP}(r_D^{K3\pi})^2) \cos(\delta_D^{K\pi} + \phi)$
+ $\sqrt{K_i \bar{K}_i} R_{K3\pi}^i r_D^{K3\pi}(r_{CP} + r_{CP}^{-1}(r_D^{K\pi})^2) \cos(\delta_D^{i,K3\pi} - \phi)]$
- $4x[r_D^{K\pi}(K_i r_{CP}^{-1} - \bar{K}_i r_{CP}(r_D^{K3\pi})^2) \sin(\delta_D^{K\pi} + \phi)$
+ $\sqrt{K_i \bar{K}_i} R_{K3\pi}^i r_D^{K3\pi}(r_{CP} - r_{CP}^{-1}(r_D^{K\pi})^2) \sin(\delta_D^{i,K3\pi} - \phi)]$ }

 $R^{C-odd}(K^-\pi^+\pi^-\pi^+;K^+\pi^-)\propto A_{K3\pi}^2A_{K\pi}^2\{(x^2+y^2)[K_i(r_{CP}^{-1})^2(r_D^{K\pi})^2+\bar{K}_i(r_{CP})^2(r_D^{K3\pi})^2$ $-2\sqrt{K_i\bar{K}_i}R_{K3\pi}^i r_D^{K3\pi} r_D^{K\pi} \cos(\delta_D^{i,K3\pi} - \delta_D^{K\pi} - 2\phi)$ $+[2-(x^{2}-y^{2})][K_{i}+\bar{K}_{i}(r_{D}^{K\pi})^{2}(r_{D}^{K3\pi})^{2}]$ $-2\sqrt{K_i\bar{K}_i}r_{D}^{K\pi}R_{K3\pi}^{i}r_{D}^{K3\pi}\cos(\delta_{D}^{i,K3\pi}+\delta_{D}^{K\pi})$

Strong phase parameters are fixed.

Analysis strategy: fitting method of incoherent sample

⚫ The time-independent decay rates turn out to be:

$$
R(D^{0} \to K^{-}\pi^{+}\pi^{+}\pi^{-}) \propto A_{K3\pi}^{2}[K_{i} + \frac{1}{2}(x^{2} + y^{2})(r_{CP})^{2}(r_{D}^{K3\pi})^{2}\bar{K}_{i} - \frac{1}{2}(x^{2} - y^{2})K_{i}
$$

\n
$$
- \sqrt{K_{i}\bar{K}_{i}}r_{CP}r_{D}^{K3\pi}R_{K3\pi}^{i}(y\cos(\delta_{D}^{i,K3\pi} - \phi) + x\sin(\delta_{D}^{i,K3\pi} - \phi))]
$$

\n
$$
R(\bar{D}^{0} \to K^{-}\pi^{+}\pi^{+}\pi^{-}) \propto A_{K3\pi}^{2}[\bar{K}_{i}(r_{D}^{K3\pi})^{2} + \frac{1}{2}(x^{2} + y^{2})(r_{CP}^{-1})^{2}K_{i} - \frac{1}{2}(x^{2} - y^{2})\bar{K}_{i}(r_{D}^{K3\pi})
$$

\n
$$
- \sqrt{K_{i}\bar{K}_{i}}r_{CP}^{-1}r_{D}^{K3\pi}R_{K3\pi}^{i}(y\cos(\delta_{D}^{i,K3\pi} - \phi) - x\sin(\delta_{D}^{i,K3\pi} - \phi))]
$$

\n
$$
R(D^{0} \to K^{+}\pi^{-}\pi^{-}\pi^{+}) \propto A_{K3\pi}^{2}[\bar{K}_{i}(r_{D}^{K3\pi})^{2} + \frac{1}{2}(x^{2} + y^{2})(r_{CP})^{2}K_{i} - \frac{1}{2}(x^{2} - y^{2})\bar{K}_{i}(r_{D}^{K3\pi})^{2}
$$

\n
$$
- \sqrt{K_{i}\bar{K}_{i}}r_{CP}r_{D}^{K3\pi}R_{K3\pi}^{i}(y\cos(\delta_{D}^{i,K3\pi} + \phi) + x\sin(\delta_{D}^{i,K3\pi} + \phi))]
$$

\n
$$
R(\bar{D}^{0} \to K^{+}\pi^{-}\pi^{-}\pi^{+}) \propto A_{K3\pi}^{2}[K_{i} + \frac{1}{2}(x^{2} + y^{2})(r_{CP}^{-1})^{2}(r_{D}^{K3\pi})^{2}\bar{K}_{i} - \frac{1}{2}(x^{2} - y^{2})K_{i}
$$
<

⚫ The charm mixing parameters are extracted by:

$$
N_{sig} = \mathcal{L} \cdot \sigma_{D^{*+}D^{-}}^{obs} \cdot R \cdot \mathcal{B}(D^{*+} \to D^0 \pi^+) \cdot \varepsilon_{sig}
$$

Similar treatment in $D^{*+}D^{*-}$ sample.

Binning scheme of $K^-\pi^+\pi^+\pi^-$

Local strong phase has been divided into 4 bins with approximately equal population of CF decay events.

$$
\tilde{\delta}_{D}^{K3\pi} = \arg(A_{\bar{D}^0 \to K^+3\pi}(\mathbf{x})A_{D^0 \to K^+3\pi}^*(\mathbf{x})) - \arg(\int A_{\bar{D}^0 \to K^+3\pi}(\mathbf{x}')A_{D^0 \to K^+3\pi}^*(\mathbf{x}')d\mathbf{x}')
$$

 \bullet Binned parameters $R_{K3\pi,i}$ and $\delta^{K3\pi,i}_{D}$ in each bin has been calculated by the amplitude model.

Phys. Lett. B 802 (2020) 135188

 $\times 10^{-3}$

DCS $-$ CF

 -100

100

 $\tilde{\delta}_{K3\pi}\,[^{\circ}]$

 $\overline{0}$

 $Entries/4^{\circ}$

25

20

15

10

 $\overline{5}$

 Ω

Binning scheme of $K^-\pi^+\pi^0$

The phase space of the D meson decay is divided into disjoint regions using the model predictions for the strong-phase difference between the CF(BESIII) and DCS(*BABAR*) amplitudes.

> Δδ_{Kππ}ο = arg($A_{\overline{D}^0\to K^+\pi^-\pi^0}A^*_{D^0\to K^+\pi^-\pi^0}$ * $D^0 \rightarrow K^+ \pi^- \pi^0$

• Similar to the binning scheme for the decay $D^0 \to K\pi\pi\pi$, we initially categorize the decay $D^0 \to K\pi\pi^0$ into four bins.

Sensitivity study results

The results of the charm mixing and CPV parameters are summarized in the following table, where

the uncertainty is only statistical.

The most accurate results will be obtained at $E_{cms} = 4030$ MeV, as more samples are available at this energy point.

Summary:

- Precision measurement of charm mixing is an important goal in heavy flavor physics for the next decade.
- Time-integrated measurements with C-even $D\overline{D}$ and incoherent $D\overline{D}$ at STCF are essential contributions.
- The most accurate results will be obtained at $E_{cms} = 4030$ MeV, as more samples are available at this energy point.

Plan:

- Study of more double tag channels, such as $K_S \pi^+ \pi^- \pi^0$ and $K^- \pi^+ \pi^0 \pi^0$.
- Sensitivity of direct CPV at STCF with K^+K^- , $\pi^+\pi^-$ and some CP eigenstates.

Backup

$\boldsymbol{\psi}(3770) \to \boldsymbol{D^0\overline{D}^0}$

 $\psi(3770)$: $I^G(J^{PC}) = 0^-(1^{--})$

 (0^-)

1

 $D^0\overline{D}{}^0$ 轨道角动量 $L = 1$, $D^0\overline{D}{}^0$ 可看作全同玻色子。

2

 D^0 : $I(J^P) =$

 $\psi = \psi(r_1, r_2) \cdot \chi_{s,s_2} \cdot \chi_{I,I_3} \cdot \psi(D^0, \bar{D}^0)$ 两玻色子体系的总波函数:

角动量守恒

空间波函数,自旋波函数,同位旋波函数,态函数

 $L = 1$ 空间波函数满足反对称关系 两末态粒子总自旋为0 自旋波函数是对称的 两末态粒子总同位旋为0 同位旋波函数是对称的 母粒子为玻色子,满足玻色对称关系 态函数必须满足反对称关系

● 由于对称性关系的要求, $D^0\overline{D}{}^0$ 不可能出于相同的量子态, 例如 $D^0 \rightarrow K^-\pi^+$ vs $\overline{D}{}^0 \rightarrow K^-\pi^+$ 在奇C宇称关联的D^oD^o样本中是完全禁戒的。

 $e^+e^-\to \gamma^*\to \gamma D^0\overline{D}{}^0$

 $\gamma^* \colon J^P = 1^ D^0$: $I(J^P) =$ 1 2 (0^-) $\gamma: I = 1$

两玻色子体系的总波函数:

$$
\gamma^*\colon\thinspace J^P=1^-
$$

角动量守恒

空间波函数,自旋波函数,同位旋波函数,态函数

 $D^0\overline{D}{}^0$ 轨道角动量 $L=0$ 。

 $L = 0$ 空间波函数满足对称关系 两末态粒子总自旋为0 自旋波函数是对称的 两末态粒子总同位旋为0 同位旋波函数是对称的 母粒子为玻色子,满足玻色对称关系 态函数必须满足对称关系

 $e^+e^- \rightarrow n\gamma m\pi^0 D^0 \overline{D}{}^0$, 当n为奇数时, 态函数满足交换反对称关系。