

STCF上陶轻子和粲强 子的CP破坏研究

《CP violation studies at Super tau-charm facility》

Yu Zhang (张宇) 南华大学 yuzhang@usc.edu.cn

2024超级陶粲装置研讨会, 7-11/07/2024, 兰州大学

CP破坏研究专题

CP violation studies at Super tau-charm facility

Haiyang Cheng^a, Zhihui Guo^b, Xiaogang He^c, Yingrui Hou^d, Xianwei Kang^e, Andrzej Kupscfg, Ying-Ying Lih, Liang Liuh, Xiaorui Lyud, Jianping Mai, Stephen Lars Olsen^{j,k}, Haiping Pengh, Qin Qinl, Pablo Roig^m, Zhizhong Xingⁿ, Fusheng Yuº, Yu Zhang^p, Jianyu Zhang^d, Xiaorong Zhou^h

^aInstitute of Physics, Academia Sinica, Taipei, 11529, China ^bHebei Normal University, Shijiazhuang, 050024, China ^cShanghai Jiao Tong University, Shanghai, 200250, China ^d University of Chinese Academy of Sciences, Beijing, 100049, China Beijing Normal University, Beijing, 100875, China ¹National Centre for Nuclear Research, Warsaw, 02-093, Poland ⁸Uppsala University, Uppsala, SE-75120, Sweden hUniversity of Science and Technology of China, Address One, 230026, China ¹Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing, 100190, China ¹High Energy Physics Center, Chung-Ang University, Seoul, 06974, Korea ^kParticle and Nuclear Physics Institute, Institute for Basic Science, Daejeon, 34126, Korea ¹Huazhong University of Science and Technology, Wuhan, 430074, China ^mDepartamento de Fisica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Mexico City, AP 14740, CP 07000, Mexico "Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China ^oLanzhou University, Lanzhou, 730000, China PUniversity of South China, Hengyang, 421001, China

Abstract

Charge-parity (CP) violation in tau-charm energy region is one of the promising areas to search for. The future tau-charm facility of next generation is designed to operate in a center-of-mass energy from 2.0 to 7.0 GeV with a peak luminosity of 0.5×10^{35} cm⁻²s⁻¹. Huge amount of hadrons or τ leptons will be collected with well kinematic constraint and low-background environment. In this report, possibilities of CP violation studies in tau-charm energy region and at the future tau-charm facility are discussed from various aspects, i.e. in the production and decay of hyperons and τ lepton; in the decay of charmed hadrons. We also study the combined symmetry of CP and time reversal T, CPT invariance test in $K^0 - \bar{K}^0$ mixing.

Preprint submitted to PHYSICS REPORTS

July 7, 2024

Co	ntents			4.2.6 CB sighting the to DI DI and KI - KI assillation	1
1	Introduction	4		4.2.6 CP violation due to $D^* - D^*$ and $K^* - K^*$ oscillating interference	52
12		10	13	Indirect <i>CP</i> violation associated with D^0 \overline{D}^0 mixing	52
2	CP-violation in hyperon sector	7	4.5	4.2.1 Formulas for incoherent neutral D meson decays	54
	2.1 Direct CP violation in strange quark systems	7		4.3.2 Formulas for acharant $(D^0 \overline{D}^0)$ decays	55
	2.2 Hyperon two-body hadronic weak decays	8		4.3.2 Formulas for concrete $(D^*D^*)_{C=\pm 1}$ decays	55
	2.3 Spin entangled baryon-antibaryon systems	13		4.5.5 CP violation in $D^* \rightarrow \pi^+\pi^-$ and A^+A^- decays	59
	2.4 Radiative and semileptonic decays	18	4.4	4.5.4 <i>CP</i> violation in $D^* \to K^+ K^-$ and $K^+ K^-$ decays (02
	2.5 <i>CP</i> violation in production via edm	22	4.4	Direct CP violation in the decays of charmed mesons and	~
	2.6 <i>CP</i> violation in charmed baryon decays	22		charmed baryons	64
	2.7 Prospect of hyperon <i>CP</i> -violation study at STCF	24	4.5	Prospect of Charm <i>CP</i> violation studies at STCF	67
	2.7.1 Event selection	24		4.5.1 Measurements of the $D \to K^- \pi^+ \pi^- \pi^-$ decay (61
	2.7.2 Sensitivity of <i>CP</i> -violation in hyperon decay	25		4.5.2 Measurements of the $D \to K_S^0 \pi^+ \pi^-$ decay	68
	2.7.3 Comparison of hyperon <i>CP</i> sensitivity with different ex-			4.5.3 Measurements of the $D \to K^- \pi^+ \pi^0$ decay	69
_	periments	27		4.5.4 Overall prospects	69
3	CP-violation in $ au$ sector	30	5 Tes	ts of the CPT invariance with J/ψ decays	70
	3.1 Hadronic form factors in semileptonic τ decays	30	5.1	CPT and the Theory of Everything	71
	3.2 Structure functions in hadronic τ decays	33	5.2	Neutral K mesons and tests of the CPT theorem	72
	3.3 <i>CP</i> -violation observables in hadronic τ decays	34	5.3	The neutral kaon mass eigenstates with no CPT-invariance re-	1
	3.4 <i>CP</i> violating asymmetries in $\tau \rightarrow K_S \pi \nu$ decays: the BaBar		0.0	lated restrictions	73
	anomaly and the Belle measurement	36		5.3.1 Properties of ε and δ	75
	3.5 <i>CP</i> -violation proposal via EDM	39	54	Interference measurements of the ϕ_{1} and ϕ_{2} phases	76
	3.6 Prospect of τCP -violation study at STCF	40	5.1	5.4.1 Estimated measurement sensitivity with 10^{12} <i>U</i> /b-decays	77
	3.6.1 MC simulation of $\tau^- \to K_S \pi^- \nu_{\tau}$	40	55	Comment on the Bell Steinberger relation	70
	3.6.2 Optimization of event selection	41	56	Comments	82
	5.0.5 Sensitivity of CP -violation in $\gamma \to K_S \pi^- \nu_{\tau}$ at STCP.	45	57	Prospects of Kaon CPT study at STCF	82
4	CP-violation in charm sector	45	5.1	5.7.1 MC simulation of $J/\psi \rightarrow K^- \pi^+ K^0 + c c$	83
	4.1 The CKM matrix and its unitarity	45		572 Event selection procedure	83
	4.2 Six types of <i>CP</i> violation	46		5.7.3 Expected sensitivity at STCF	83
	4.2.1 CP violation in the direct decays	46		574 Systematic uncertainty discussion	84
	4.2.2 <i>CP</i> violation from $D^0 - \overline{D}^0$ mixing	47		Sint Systemate alcerancy discussion	· ·
	4.2.3 CP violation from the interplay between decay and mixing	48	5 Sun	amary	85
	4.2.4 <i>CP</i> violation in the <i>CP</i> -forbidden coherent $D^0 \overline{D}^0$ decays.	50			
	4.2.5 <i>CP</i> violation due to the final-state $K^0 - \bar{K}^0$ mixing	51	Acknow	wledgement	87

2

Not complete overview!

 τ 轻子的CP破坏 $\tau \to K_S^0 \pi v_{\tau}$

 $\tau \to K^0 \pi v_\tau$ 衰变

JHEP 01 (2022) 108

CP不变, V_{us}为实数且两过程中的强相位相等
 不存在直接CP破坏: A(τ⁻ → K⁰π⁻v_τ) = A(τ⁺ → K⁰π⁺v_τ)

$\tau \to K_S^0 \pi v_\tau$ 衰变中的CP不对称

PRD 75 (2007) 076001

$\tau \to K_S^0 \pi v_\tau$ 中CP不对称性理论预言

实验测量的CP不对称性的大小依赖于K⁰衰变时间需要考虑不同K⁰衰变时间的实验探测效率

$\tau \to K_S^0 \pi v_\tau \text{+} \text{CP不对称性测量}$

	$N(\tau^+)$	$N(\tau^{-})$	A_{CP}^{τ}
<i>e</i> 标记 (78.7%)	99842	99222	-0.39(23)(13)%
μ标记 (78.4%)	70369	70233	-0.12(27)(10)%

 $A_{CP,EXP}^{\tau} = -0.36(23)(11)\%$ $A_{CP,SM}^{\tau} = 0.36(1)\%$ 2.8σ tension

$\tau \to K_S^0 \pi v_\tau$ 中的角分布

see ZPC 56 (1992) 661&PLB 398 (1997) 407 for detail

$\tau \to K_S^0 \pi v_\tau$ 中的角分布测量

160K *τ*⁺/*τ*⁻事例 (纯度78%) Belle, PRL 107 (2011) 131801

W	$W = A^{cp} (10^{-3})$					
$({ m GeV}/c^2)$	Observed	Corrected	Backgr. subtr.	$n_i/N_s(\%)$		
0.625 - 0.890	-0.1 ± 2.1	5.2 ± 2.1	$7.9 \pm 3.0 \pm 2.8$	36.53 ± 0.14		
0.890 - 1.110	-2.7 ± 1.7	1.6 ± 1.7	$1.8\pm2.1\pm1.4$	57.85 ± 0.15		
1.110 - 1.420	-5.1 ± 4.7	-3.5 ± 4.7	$-4.6 \pm 7.2 \pm 1.7$	4.87 ± 0.04		
1.420 - 1.775	9.3 ± 12.1	9.6 ± 12.1	$-2.3 \pm 19.1 \pm 5.5$	0.75 ± 0.02		

没有观测到CP不对称

STCF精度预研

STCF快模拟软件 1 ab^{-1} @4.26GeV $e^+e^- \rightarrow \tau^+\tau^-$ 产生子: KKMC+TAUOLA

$$\begin{aligned} \tau \to K_S^0 \pi \upsilon_\tau \colon & \frac{d\Gamma}{d\sqrt{s}} \propto \frac{1}{s} \left(1 - \frac{s}{m_\tau^2} \right)^2 \left(1 + \frac{2s}{m_\tau^2} \right) P(s) \times \left\{ P^2(s) |F_V|^2 + \frac{3(m_{K_S}^2 - m_\pi^2)^2 |F_S|^2}{4s(1 + \frac{2s}{m_\tau^2})} \right\} \\ P(s) &= \frac{\sqrt{(s - (m_{K_S} + m_\pi)^2)(s - (m_{K_S} - m_\pi)^2)}}{2\sqrt{s}}. \end{aligned}$$

-

考虑了标量/矢量形状因子

$$F_{V} = \frac{BW_{K^{*}(892)} + a_{K^{*}(1410)} \cdot BW_{K^{*}(1410)}}{1 + a_{K^{*}(1410)}}$$

基于无CP不对称假设

STCF精度预研

• 信号事例重建

$$y_L(\vec{x}) = \frac{L_S(\vec{x})}{L_S(\vec{x}) + L_B(\vec{x})},$$

似然函数比: 中性簇射数目 K_s^0 子粒子动量 K_s^0 飞行距离 $\pi^+\pi^-$ 不变质量 K_s^0 顶点拟合优度 电子E/P μ 子极角 π动量, $K_s^0\pi$ 动量

~3.7 million τ^+/τ^- 信号事例 $\delta(A_{CP,EXP}^{\tau}) \sim 9.7 \times 10^{-4}$ 10 ab^{-1} 数据: $\delta(A_{CP,EXP}^{\tau}) \sim 3 \times 10^{-4}$ $\delta(A_{CP,SM}^{\tau}) \sim 1 \times 10^{-4}$

直接CP破坏

$$\begin{aligned} A(D^0 \to f) &= A_1 e^{i(\delta_1 + \phi_1)} + A_2 e^{i(\delta_2 + \phi_2)} ,\\ A(\bar{D}^0 \to \bar{f}) &= A_1 e^{i(\delta_1 - \phi_1)} + A_2 e^{i(\delta_2 - \phi_2)} , \end{aligned}$$

$$f \equiv \frac{\Gamma(D^{0} \to f) - \Gamma(D^{0} \to f)}{\Gamma(D^{0} \to f) + \Gamma(\bar{D}^{0} \to \bar{f})} \\ = \frac{-2A_{1}A_{2}\sin(\delta_{2} - \delta_{1})\sin(\phi_{2} - \phi_{1})}{|A_{1}|^{2} + |A_{2}|^{2} + 2A_{1}A_{2}\cos(\delta_{2} - \delta_{1})\cos(\phi_{2} - \phi_{1})}.$$

A

CP守恒强相位: $\delta_1 \neq \delta_2$ CP破缺弱相位: $\phi_1 \neq \phi_2$

质量本征态:
$$|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D}^0\rangle$$

Time evolution of a initially flavour eigenstate *D*:

$$\left| D_{phys}^{0}(t) \right\rangle = g_{+}(t) \left| D^{0} \right\rangle + \frac{q}{p} g_{-}(t) \left| \overline{D}^{0} \right\rangle \qquad g_{+}(t) = \exp\left(-(im + \frac{\Gamma}{2})t\right) \cosh\left((i\Delta m - \frac{\Delta\Gamma}{2})\frac{t}{2}\right) \qquad m \equiv \frac{m_{1} + m_{2}}{2}, \Delta m \equiv m_{2} - m_{1} + \frac{\Gamma}{2} +$$

粲介子混合参数: $x \equiv \frac{\Delta m}{\Gamma}, y \equiv \frac{\Delta \Gamma}{2\Gamma}$ Short distance contributions

Long distance contributions

loop level $(x, y) \sim 10^{-7}$

Phys. Lett. B 810 (2020) 135802 Chin. Phys. C 42 (2018) 063101 D^0 Phys. Rev. D 81 (2010) 114020 Phys. Rev. D 65 (2002) 054034

Plots from arXiv:1503.00032

间接CP破坏 $\left| D_{phys}^{0}(t) \right\rangle = g_{+}(t) \left| D^{0} \right\rangle + \frac{q}{n} g_{-}(t) \left| \overline{D}^{0} \right\rangle$ $\left|\overline{D}_{phys}^{0}(t)\right\rangle = g_{+}(t)\left|\overline{D}^{0}\right\rangle + \frac{q}{n}g_{-}(t)\left|D^{0}\right\rangle$ Type 1. 混合CP破坏 Probability of $|D_{phys}^{0}(t)\rangle \rightarrow |\overline{D}^{0}\rangle \neq |\overline{D}_{phys}^{0}(t)\rangle \rightarrow |D^{0}\rangle$: $|\frac{q}{n}| \neq 1$ Type 2. 混合和衰变振幅的干涉 Non-vanishing ϕ in $\frac{q}{n} = \left|\frac{q}{n}\right| e^{i\phi}$ 含时衰变率: $R(D_{\text{phys}}^0(t) \to f) \propto |A_f|^2 \exp(-\Gamma t) \left[1 + \frac{1}{4} \left(x_D^2 + y_D^2\right) |\lambda_f|^2 \Gamma^2 t^2\right]$ $-\frac{1}{4} \left(x_D^2 - y_D^2 \right) \Gamma^2 t^2 - \left(y_D \text{Re}\lambda_f + x_D \text{Im}\lambda_f \right) \Gamma t \right]$ $\lambda_f = r_f |\frac{q}{n}| e^{-i(\delta_D^f + \phi)}$ Phys. Rev. D 55 (1997) 196 \overline{D}^0 $D^{\overline{0}}$

$D \to K^0_{S,L} X$ 中的 $K^0 - \overline{K}^0$ 混合

$$\begin{split} A(D^+ \to X^+ K_{\rm S}) &= \frac{1}{\sqrt{2 \left(1 + |\epsilon_K|^2\right)}} \left[\left(1 + \epsilon_K^*\right) T_1 e^{\mathrm{i}\left(\delta_1 + \phi_1\right)} + \left(1 - \epsilon_K^*\right) T_2 e^{\mathrm{i}\left(\delta_2 + \phi_2\right)} \right] \\ A(D^- \to X^- K_{\rm S}) &= \frac{1}{\sqrt{2 \left(1 + |\epsilon_K|^2\right)}} \left[\left(1 - \epsilon_K^*\right) T_1 e^{\mathrm{i}\left(\delta_1 - \phi_1\right)} + \left(1 + \epsilon_K^*\right) T_2 e^{\mathrm{i}\left(\delta_2 - \phi_2\right)} \right] \end{split}$$

$$\begin{split} \mathcal{A}_{X^{\pm}K_{\mathrm{S}}} &\equiv \frac{\Gamma(D^{-} \to X^{-}K_{\mathrm{S}}) - \Gamma(D^{+} \to X^{+}K_{\mathrm{S}})}{\Gamma(D^{-} \to X^{-}K_{\mathrm{S}}) + \Gamma(D^{+} \to X^{+}K_{\mathrm{S}})} \\ &= 2\frac{\operatorname{Re}\epsilon_{K}\left(T_{2}^{2} - T_{1}^{2}\right) + 2\operatorname{Im}\epsilon_{K}T_{1}T_{2}\cos\left(\phi_{2} - \phi_{1}\right)\sin\left(\delta_{2} - \delta_{1}\right)}{T_{1}^{2} + T_{2}^{2} + 2T_{1}T_{2}\cos\left(\phi_{2} - \phi_{1}\right)\cos\left(\delta_{2} - \delta_{1}\right)} \\ &+ 2\frac{T_{1}T_{2}\sin\left(\phi_{2} - \phi_{1}\right)\sin\left(\delta_{2} - \delta_{1}\right)}{T_{1}^{2} + T_{2}^{2} + 2T_{1}T_{2}\cos\left(\phi_{2} - \phi_{1}\right)\cos\left(\delta_{2} - \delta_{1}\right)} , \end{split}$$

17

K介子混合和粲介子混合的干涉

$$A_{\rm CP}^{\rm dm}(t_1, t_2) \propto e^{-\Gamma_D t_D - \Gamma_K t_K} \left[\sinh \frac{\Delta \Gamma_D t_D}{2} S_h(t_K) + \sin \left(\Delta m_D t_D \right) S_n(t_K) \right]$$

$$S_{h}(t_{K}) = -\sin\left(\Delta m_{K}t_{K}\right)\sin\Phi_{DK} + \frac{1}{2}\sinh\frac{\Delta\Gamma_{K}t_{K}}{2}\left(\left|\frac{q_{D}}{p_{D}}\frac{p_{K}}{q_{K}}\right| - \left|\frac{p_{D}}{q_{D}}\frac{q_{K}}{p_{K}}\right|\right)\cos\Phi_{DK}$$

$$\approx -\sin\left(\Delta m_{K}t_{K}\right)\sin\Phi_{DK} + 2\sinh\frac{\Delta\Gamma_{K}t_{K}}{2}\operatorname{Re}(\epsilon_{K} - \epsilon_{D})\cos\Phi_{DK},$$

$$S_{n}(t_{K}) = \sinh\frac{\Delta\Gamma_{K}t_{K}}{2}\sin\Phi_{DK} + \frac{1}{2}\sin\left(\Delta m_{K}t_{K}\right)\left(\left|\frac{q_{D}}{p_{D}}\frac{p_{K}}{q_{K}}\right| - \left|\frac{p_{D}}{q_{D}}\frac{q_{K}}{p_{K}}\right|\right)\cos\Phi_{DK}$$

$$\approx \sinh\frac{\Delta\Gamma_{K}t_{K}}{2}\sin\Phi_{DK} + 2\sin\left(\Delta m_{K}t_{K}\right)\operatorname{Re}(\epsilon_{K} - \epsilon_{D})\cos\Phi_{DK},$$
(77)

STCF上测量D介子CP破坏

See Ying-Hao's talk

- D⁰D⁰的量子关联性质
- @3770 MeV

C-odd, $e^+e^- \rightarrow D^0\overline{D}^0$

• @4009 MeV

C-even for $e^+e^- \to D^0\overline{D}^{*0} + c.c.$, $\overline{D}^{*0} \to \gamma\overline{D}^0$ C-odd for $e^+e^- \to D^0\overline{D}^{*0} + c.c.$, $\overline{D}^{*0} \to \pi^0\overline{D}^0$

准味道标记衰变

$$\Gamma(K^{-}\pi^{+}; K^{-}\pi^{+})_{C=+1} \propto 2|A(D^{0} \to K^{-}\pi^{+})|^{4} \left\{ 3r \left| \frac{p}{q} \right|^{2} + 4\lambda^{4}h_{K\pi}^{2} - 4\lambda^{2}h_{K\pi} \left| \frac{p}{q} \right| [y\cos(\delta_{K\pi} + \phi) + x\sin(\delta_{K\pi} + \phi)] \right\}$$
$$\Gamma(K^{+}\pi^{-}; K^{+}\pi^{-})_{C=+1} \propto 2|A(\bar{D}^{0} \to K^{+}\pi^{-})|^{4} \left\{ 3r \left| \frac{q}{p} \right|^{2} + 4\lambda^{4}h_{K\pi}^{2} - 4\lambda^{2}h_{K\pi} \left| \frac{q}{p} \right| [y\cos(\delta_{K\pi} - \phi) + x\sin(\delta_{K\pi} - \phi)] \right\}$$

$$\Gamma(K^{-}\pi^{+}; K^{-}\pi^{+})_{C=-1} \propto 2|A(D^{0} \to K^{-}\pi^{+})|^{4}r \left|\frac{p}{q}\right|^{2}$$

$$\Gamma(K^{+}\pi^{-}; K^{+}\pi^{-})_{C=-1} \propto 2|A(D^{0} \to K^{-}\pi^{+})|^{4}r \left|\frac{q}{p}\right|^{2}$$

采用Like-sign衰变模式具有最佳敏感度 C-even 量子关联可用于测量混合参数x,y以及间接CP破坏参数 $\left| \frac{q}{p} \right| e^{i\phi}$ 需要C-odd 量子关联确定CP不变的强相位

STCF上量子关联测量

利用多体衰变相空间分bin方法 有助于提高实验精度

STCF上量子关联测量精度

1 *ab*⁻¹@4009MeV 信号重建效率:STCF快模拟软件

	δ(x) /0.01	δ(y) /0.01	$\delta(rac{q}{p})$	$\delta(arg(rac{q}{p}))/^{\circ}$
$K\pi\pi^0$ (STCF)	0.044	0.017	0.034	2.51
$K\pi\pi\pi(\text{STCF})$	0.047	0.025	0.042	3.10
$K_S^0 \pi \pi (\text{STCF})$	0.069	0.050	0.077	4.57
LHCb current best	0.056	0.026	0.052	2.9
HFLAV average	0.044	0.024	0.016	1.1

● 未考虑系统误差,由强相位贡献的系统误差将可忽略

- STCF可以在10⁻⁴量级测量粲介子(间接)CP破坏
- 直接CP破坏精度有待进一步研究

- 在陶轻子和粲介子中, STCF可在10⁻⁴量级精确检 验标准模型中的CP破坏
- 陶轻子CP破坏测量精度可达到世界领先水平
- 粲介子CP破坏测量利用独特量子关联性质,与B 介子工厂上的测量互补
- 理论家提供的潜在物理课题仍需进一步研究
 - 陶轻子EDM
 - 粲重子CP破坏
 - 粲介子直接CP破坏等