

GNN for tracking at STCF

<u>Xiaoqian Jia</u>¹, Xiaoshuai Qin¹, Teng Li¹, Xingtao Huang¹, Xueyao Zhang¹, Yao Zhang² and Ye Yuan²

1. Shandong University, Qingdao

2. Institute of High Energy Physics, Beijing

2024 STCF Workshop July 9, 2024

Outline

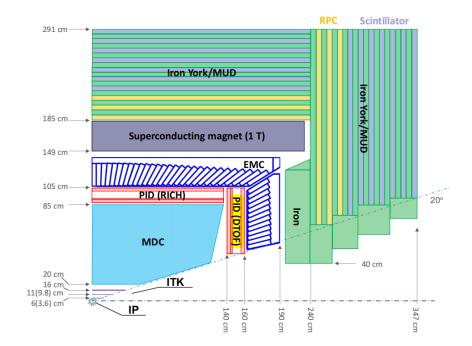
- **01** MDC
- **02** Methodology
 - > Filtering Noise via GNN
 - ➤ Clustering of Tracks Based on DBSCAN and RANSAC
- **03** Preliminary Results
- **04** Summary

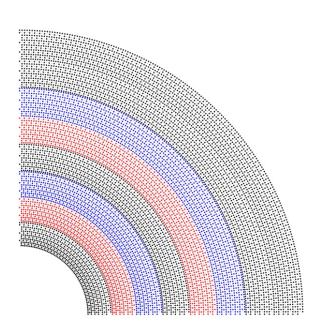
01

MDC at STCF

Super Tau-Charm Facility (STCF)

- High Luminosity: $> 0.5 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}@4\text{GeV}$
- CMS: 2.0 7 GeV
- ◆ Main Drift Chamber (MDC) at STCF
 - 48 sense wire layers
 - 4 axial wire super-layers,4 stereo wire super-layers
 - dE/dx resolution : ~6%
 - Momentum resolution : 0.5%@1GeV/c





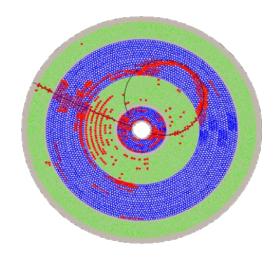
Traditional tracking of drift chamber

MDC hits produced by charged particles Track finding Track fitting Vertex and physics object reconstruction

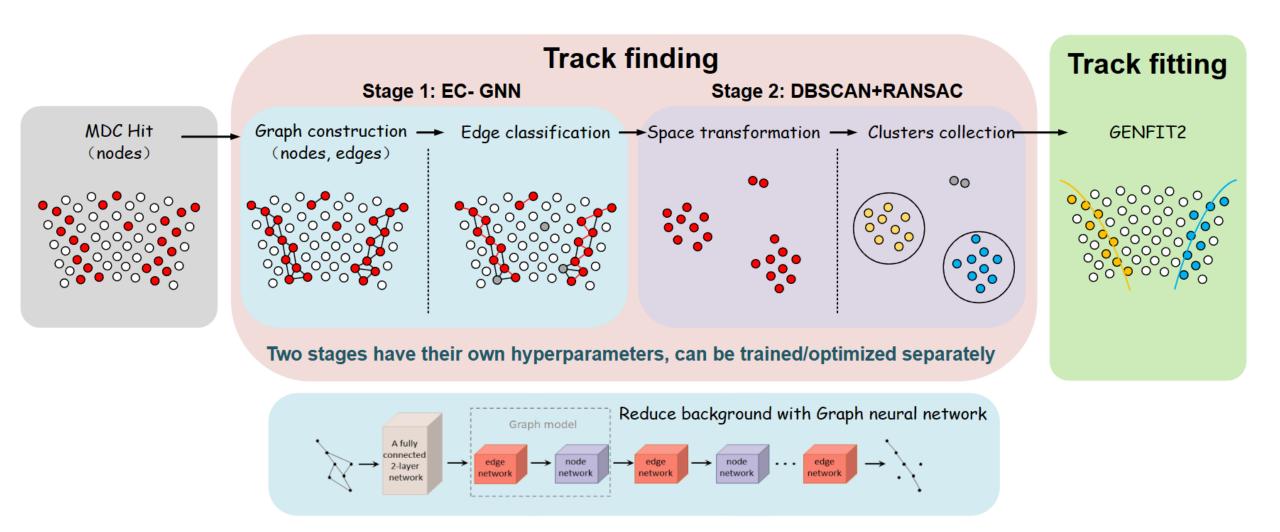
- Build candidate tracks and perform hits assignment
 - Global approach : Hough Transform (HOUGH)
 - Local approach: Template Matching (PAT) Track Segment Finding (TSF)

Combinatorial Kalman Filter (CKF)

- Estimate the track parameters
 - Global fit: Least Square Method, Runge-Kutta Method
 - Recursive fit: Kalman filter



Methodology: GNN based tracking pipeline



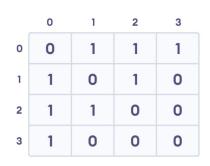
Xiaoqian Jia 3

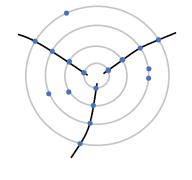
02

Graph and Graph Neural Network

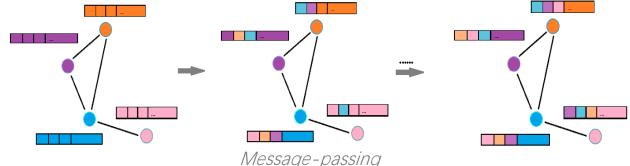
- ◆ A type of neural network that are specifically designed to operate on graph-structured data
- ◆ Graph: nodes, edges
- ◆ Graph → Track
 - Nodes → Hits
 - edges → track segments
- ◆ The storage structure of graphs
 - Adjacency matrix 1/
 - Adjacency table
 - Orthogonal list
 - Adjacency multiple table
 - Edge set array
 - •

node G = (N, E)





- GNN key idea: propagate information across the graph using a set of learnable functions that operate on node and edge features
- Graph Neural Network edge classifier
 - High classification score
 - → the edge belongs to a true particle track
 - Low classification score
 - → it is a spurious or noise edge

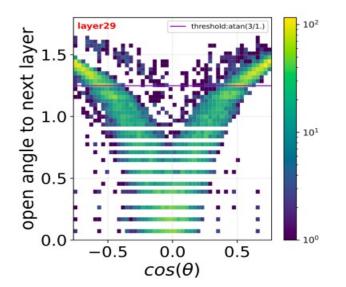


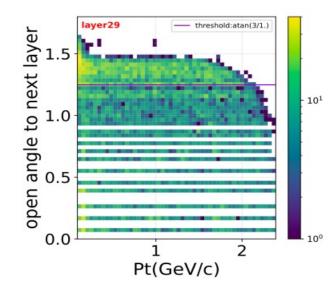
Graph construction at STCF

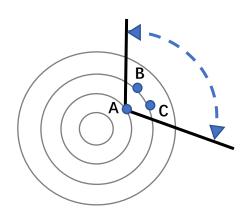
To reduce the number of fake edges during graph construction

Geometric cut at STCF

- ◆ Edge assignment
 - Hit and two adjacent hits on the left and right sides (same layer)
 - Within a certain opening angle (the next layer and one layer apart)
- Angle range
 - No sense wire efficiency
 - The junction of U-V superlayers (layers 11 and 29) appropriately amplify the threshold
- Graph representation
 - Node features (raw time, position coordinates r, φ of the sense wires), adjacency matrices, edge labels

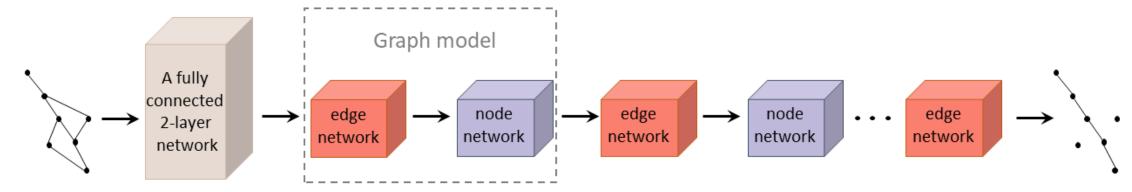






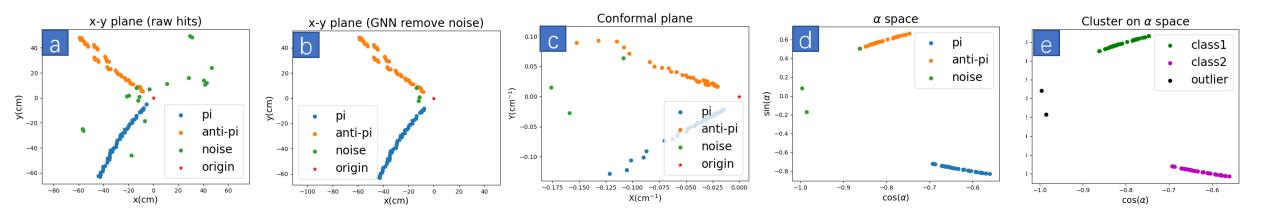
GNN edge classifier based on PyTorch

- ◆ Input network
 - Node features embedded in latent space
- Graph model
 - Edge network computes weights for edges using the features of the start and end nodes
 - Node network computes new node features using the edge weight aggregated features s of the connected nodes and the nodes' current features
 - MLPs
 - 8 graph iterations
- Strengthen important connections and weaken useless or spurious ones.



02

Clustering based on DBSCAN

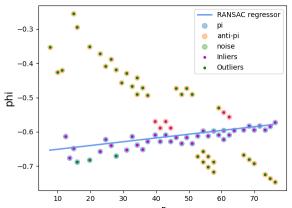


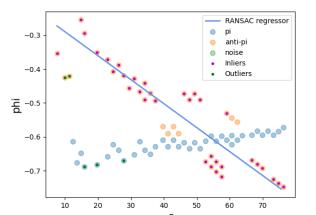
- a) Original MC data sample
 - J/ $\Psi \rightarrow \rho^0 \pi^0 \rightarrow \gamma \gamma \pi^+ \pi^-$
 - π⁺, π⁻ : Pt (0.2GeV 1.4GeV)
- b) Remove noise via GNN
- c) Transform to Conformal plane
 - $X = \frac{2x}{x^2 + y^2} Y = \frac{2y}{X^2 + y^2}$
 - Circle passing the origin transform into a straight line

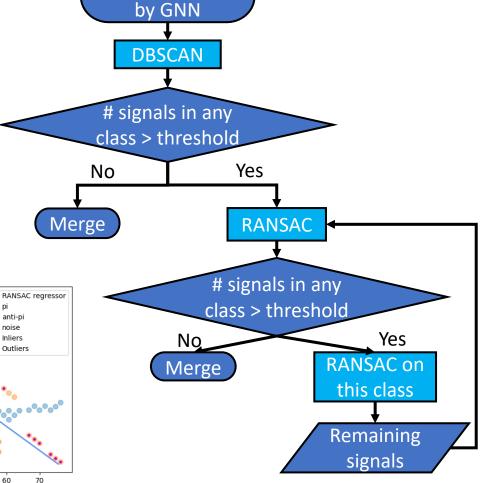
- d) Transform to 'α' parameter plane
 - Hits connected in the X-Y plane in a straight line
 - α as the angle between the straight line and X axis
 - The parameter space as $\cos \alpha$ and $\sin \alpha$
- e) DBSCAN clustering in ' α ' parameter plane
 - Density-Based Spatial Clustering of Application with Noise
 - Hits in a cluster are considered to be in the same track

Clustering salvage algorithm RANSAC

- Random sample consensus (RANCAS)
 - Estimate a mathematical model from the data that contains outliers
 - Its good robustness to noise and outliers
 - Model can be specified
- ◆ RANCAS is triggered by the events that DBSCAN processing fails
 - Polar coordinate space
 - linear model
 - Inliers → a track, outliers → other tracks
 - Stop condition: outliers < threshold





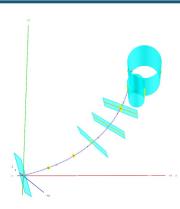


Signals selected

02 Track fitting

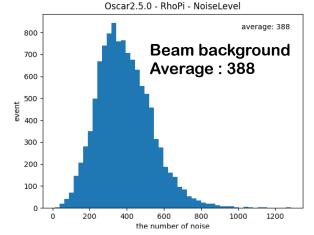
Genfit2

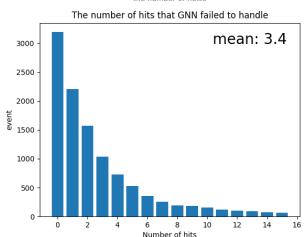
- A Generic Track-Fitting Toolkit
- Experiment-independent framework
- PANDA, Belle II, FOPI and other experiments
- Deterministic annealing filter (DAF) to resolving the left-right ambiguities of wire measurements
- Configuration: Detector geometry and materials
- lacktriangle Input: Signal wire position, initial values of position and momentum, particle hypothesis for e, μ , π , k, p
- Fitting procedure:
 - Start 1st try: drift distance roughly estimated from TDC、ADC of sense wires
 - Iteration to update information of drift distance, left-right assignment, hit position on z direction and entrancing angle in the cell et al.

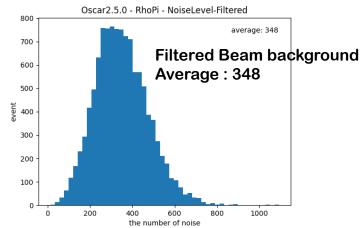


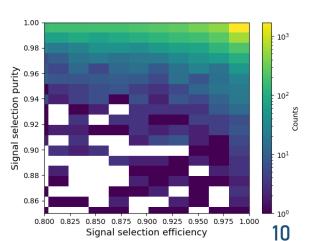
Performance of filtering noise at STCF

- Dataset
 - $J/\Psi \rightarrow \rho 0 \pi 0 \rightarrow \gamma \gamma \pi + \pi \text{ from MC simulation}$
 - Mixing background (Luminosity-related, Beam-gas effect, Touschek effect) within the framework
- Hit selection performance
 - Noise level: 348
 - Hit selection Efficiency : $\frac{N_{signal}^{predicted}}{N_{signal}^{real}}$ 91.7%
 - Hit selection Purity : $\frac{N_{signal}^{predicted}}{N_{all}^{predicted}}$ 97.0%
 - Remove noises rate: $\frac{N_{noise}^{\text{predicted}}}{N_{noise}^{real}}$ 99.0%



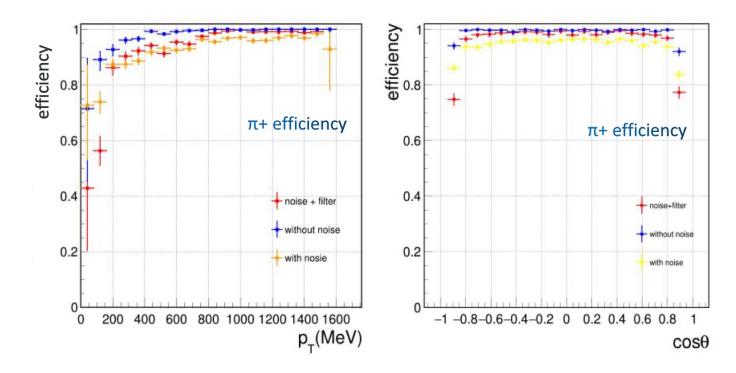






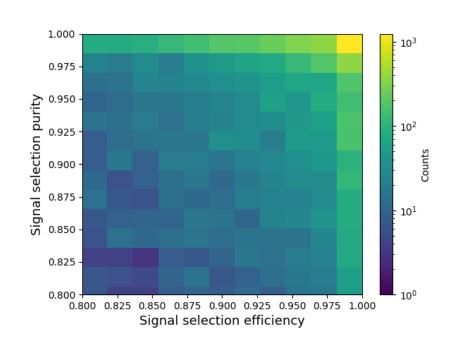
Performance of filtering noise at STCF

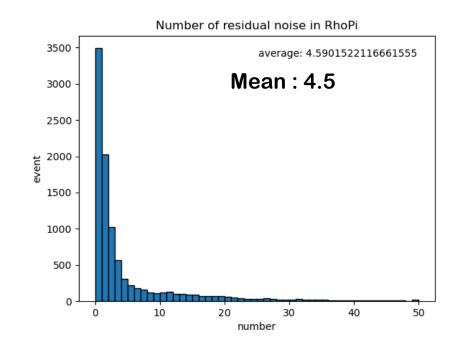
- Dataset
 - $J/\Psi \rightarrow \rho 0 \pi 0 \rightarrow \gamma \gamma \pi + \pi \text{ from MC simulation}$
 - Mixing background (Luminosity-related, Beam-gas effect, Touschek effect) within the framework
- The reconstruction efficiency after GNN filtering noise is significantly improved
- lacktriangle At large $\mid \cos \theta \mid$, the tracking efficiency decreases due to fewer signal and more noise



Performance of filtering noise at STCF

- **♦** Dataset
 - J/ $\Psi \rightarrow \rho 0 \pi 0 \rightarrow \gamma \gamma \pi + \pi -$ from MC simulation
 - Mixed with 600 random trigger noises
- Hit selection performance
 - Preliminary results shows promising performance





04 Summary

- ◆ A novel tracking algorithm prototype based on machine learning method at BESIII and STCF is under development
 - GNN to distinguish the hit-on-track from noise hits.
 - Clustering method based on DBSCAN and RANSAC to cluster hits from multiple tracks
- Preliminary results on MC data shows promising performance

Outlook

- Optimize the performance of GNN in the low momentum and large angle region
- ◆ Further optimization of the cluster model is needed
- Performance verification concerning events with more tracks and long lived particle

Xiaoqian Jia 13

Thank you!

Xiaoqian Jia

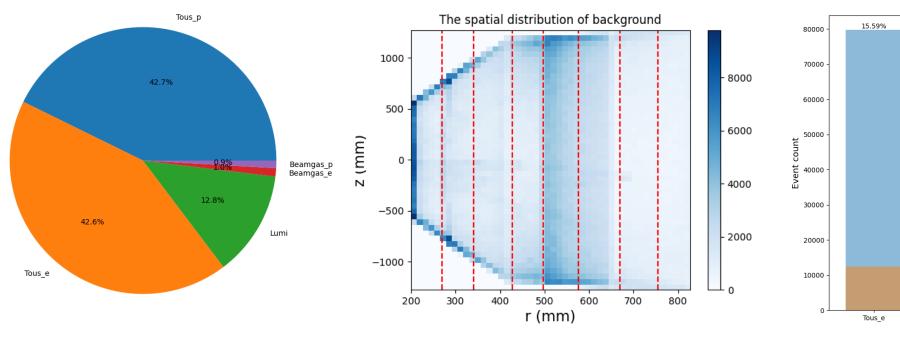
Back up

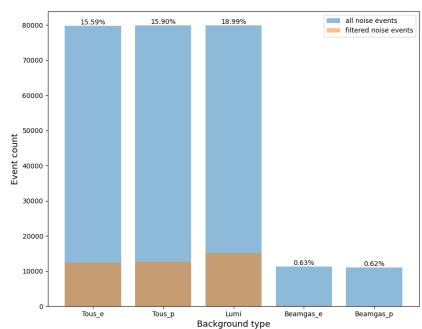
STCF background

五种类型的噪声占比 (hit level)

噪声R -Z空间分布

'Track' noise 在各类本底中的占比

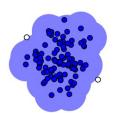




DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

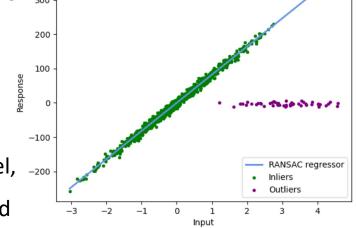
- ◆ A density-based clustering algorithm that can automatically discover clusters of arbitrary shapes and identify noise points
- Robust to outliers
- Not require the number of clusters to be told beforehand
- Parameter
 - Epsilon (radius of the circle to be created around each data point)
 - MinPoints (the minimum number of data points required inside that circle for that data point to be classified as a Core point)
 - Choose MinPoints based on the dimensionality (≥dim+1), and epsilon based on the elbow in the k-distance graph





RANSAC (Random Sample Consensus)

- ◆ Basic idea: randomly select a subset of data points, fit a model based on these points, and then judge whether the remaining data points belong to the inlier set by calculating their distances to the model
- ◆ Accurately estimate model parameters even in the presence of noise and outliers
- ◆ The specific steps
 - Randomly select a small subset of data, called the inlier set
 - Fit a model based on the inlier set
 - Calculate the distances between the remaining data points and the model, -200 and classify these points as inliers or outliers based on a certain threshold



- If the number of inliers reaches a preset threshold, the algorithm exits and the current model is considered good
- If the number of inliers is not enough, repeat steps 1-4 until the maximum iteration times are reached
- ◆ Parameters such as threshold and iteration times need to be preset