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VY MIDC at STCF

Super Tau-Charm Facility (STCF)
e High Luminosity: > 0.5 x 103> cm™ s"1@4GeV
* CMS:2.0-7 GeV
€ Main Drift Chamber (MDC) at STCF
* 48 sense wire layers
e 4 axial wire super-layers,4 stereo wire super-layers
e dE/dx resolution : ~6%
* Momentum resolution : 0.5%@1GeV/c

Scintillator

291 cm

————————fronYork/MUD—————————

185cm’IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

1499 cm—*

1 >
105cm—» 7 -
PID (RICH) | L~ 50
8cm —* - =
5 .
S L
+«—— 40cm
20cm »
16 cm\—’ = _
11(9.8)em —F ——=— —
6(3.6) cm/ ’;“u’v—"__! _________________________________________________________
IP [ [ [ N w
B =) o S5 »
o o o o ~N
3 3 3 3 3

Xiaogian Jia



Traditional tracking of drift chamber

MDC hits produced
by charged particles

@ Build candidate tracks and perform hits assignment

LEes e e Global approach : Hough Transform (HOUGH)

e Local approach : Template Matching (PAT) Track Segment Finding (TSF)
Combinatorial Kalman Filter (CKF)

Track fitting @ Estimate the track parameters

* Global fit : Least Square Method, Runge-Kutta Method

 Recursive fit : Kalman filter

Vertex and physics
object reconstruction
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m Methodology: GNN based tracking pipeline

Track finding Track fitting

Stage 1: EC- GNN Stage 2: DBSCAN+RANSAC
MDC Hit _____, Graph construction —» Edge classification —>Space transformation — Clusters collectior— GENFIT?2
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Two stages have their own hyperparameters, can be trained/optimized separately

Reduce background with Graph neural network
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m Graph and Graph Neural Network

€ A type of neural network that are specifically designed to operate on graph-structured data
@ Graph: nodes, edges
S

® Graph = Track nod e

* Nodes = Hits

 edges = track segments
@ The storage structure of graphs

« Adjacency matrix v/

* Adjacency table

* Orthogonal list

e Adjacency multiple table

* Edge set array

G = (N, E)

1 2 3

o O 1 1 1

0]
2 1 0) 0]
0

€ GNN key idea: propagate information across the graph using a set of learnable functions that operate on node
and edge features

@ Graph Neural Network edge classifier D%E l—
* High classification score —— iE-. """" EEE—./
> the edge belongs to a true particle track .\ = \ — \
* Low classification score . J Y —
= it is a spurious or noise edge 0 e 0 ~~
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m Graph construction at STCF

To reduce the number of fake edges during graph construction
Geometric cut at STCF
@ Edge assignment
* Hit and two adjacent hits on the left and right sides (same layer)
* Within a certain opening angle (the next layer and one layer apart)
@ Angle range
* No sense wire efficiency
* The junction of U-V superlayers (layers 11 and 29) appropriately amplify the threshold

@ Graph representation
* Node features (raw time, position coordinates r, ¢ of the sense wires), adjacency matrices, edge labels

layer29 —— threshold:atan(3/1.) 10?2 layer29 —— threshold:atan(3/1.)
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m GNN edge classifier based on PyTorch

@ Input network
* Node features embedded in latent space
€ Graph model
* Edge network computes weights for edges using the features of the start and end nodes
* Node network computes new node features using the edge weight aggregated features s of the connected
nodes and the nodes’ current features
* MLPs
e 8 graph iterations

@ Strengthen important connections and weaken useless or spurious ones

o e e e e e e

|
: Graph model
|

A fully I

connected : g g
q 2-Iayer : node nodade e o o
Sr— | network network .

|
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m Clustering based on DBSCAN

x-y plane (raw hits)

x-y plane (GNN remove noise)

Conformal plane

Cluster on a space
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a) Original MC data sample d) Transform to ‘a’ parameter plane
e JJW>p'n0>yynmtn * Hits connected in the X-Y plane in a straight line
e qt, 1w : Pt (0.2GeV - 1.4GeV) e aas the angle between the straight line and X axis
b) Remove noise via GNN * The parameter space as cosa and sina
c) Transform to Conformal plane e) DBSCAN clustering in ‘a’parameter plane
. xo 2y * Density-Based Spatial Clustering of Application with Noise

_ , . , , , e Hits in a cluster are considered to be in the same track
e Circle passing the origin transform into a straight line
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m Clustering salvage algorithm RANSAC

€ Random sample consensus (RANCAS)

* Estimate a mathematical model from the data that contains outliers

Signals selected
* Its good robustness to noise and outliers by GNN

* Model can be specified DBSCAN

€ RANCAS is triggered by the events that DBSCAN processing fails

# signals in any

* Polar coordinate space class > threshold

* |linear model

* Inliers > a track, outliers > other tracks RANSAC

e Stop condition: outliers < threshold

# signals in any
—_— RANSAC regressor .
. -~ 3 . - class > threshold

noise
* Inliers
* Outliers

RANSAC on
this class

Remaining
signals
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m Track fitting

Genfit2

* A Generic Track-Fitting Toolkit

e Experiment-independent framework

« PANDA, Belle Il, FOPI and other experiments % ==

* Deterministic annealing filter (DAF) to resolving the left-right ambiguities of wire measurements
@ Configuration: Detector geometry and materials
@ Input : Signal wire position, initial values of position and momentum, particle hypothesis for e, p, 1, k, p
@ Fitting procedure:
e Start 1st try: drift distance roughly estimated from TDC, ADC of sense wires
* |teration to update information of drift distance, left-right assignment, hit position on z direction and entrancing

angle in the cell et al.
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m Performance of filtering noise at STCF

@ Dataset

e J/WS>p0n0 > yyn+n—- from MC simulation

* Mixing background (Luminosity-related, Beam-gas effect, Touschek effect ) within the framework

Oscar2.5.0 - RhoPi - NoiseLevel

@ Hit selection performance

Oscar2.5.0 - RhoPi - NoiseLevel-Filtered
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m Performance of filtering noise at STCF

@ Dataset

e J/WS>p0n0 > yyn+n—- from MC simulation

*  Mixing background (Luminosity-related, Beam-gas effect, Touschek effect ) within the framework
@ The reconstruction efficiency after GNN filtering noise is significantly improved

@ Atlarge | cos6

, the tracking efficiency decreases due to fewer signal and more noise
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m Performance of filtering noise at STCF

@ Dataset

* J/W->p0n0 > vyyn+n- from MC simulation

*  Mixed with 600 random trigger noises

@ Hit selection performance

Xiaogian Jia

* Preliminary results shows promising performance

Signal selection purity
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m Summary

@ A novel tracking algorithm prototype based on machine learning method at BESIII and STCF is under development
* GNN to distinguish the hit-on-track from noise hits.
e Clustering method based on DBSCAN and RANSAC to cluster hits from multiple tracks

@ Preliminary results on MC data shows promising performance

Outlook

@ Optimize the performance of GNN in the low momentum and large angle region
@ Further optimization of the cluster model is needed

@ Performance verification concerning events with more tracks and long lived particle
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- STCF background

hFSEEIRIERE SEE (hit level) ISR —ZZ8[B)01h ‘Track’ noise ERZEANEFHIAEE

Background Type Distribution
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- D BSCAN (Density-Based Spatial Clustering of Applications with Noise)

——_————

@ A density-based clustering algorithm that can automatically discover clusters of arbitrary e e
shapes and identify noise points Lo A/’ ‘\'
[ ° [ ] I:

@ Robust to outliers e e

- -

@ Not require the number of clusters to be told beforehand

&® Parameter

e Epsilon (radius of the circle to be created around each data point)
* MinPoints (the minimum number of data points required inside that circle for that

data point to be classified as a Core point)

e Choose MinPoints based on the dimensionality (2dim+1), and epsilon based on the

elbow in the k-distance graph



RANSAC (Random Sample Consensus)

@ Basic idea: randomly select a subset of data points, fit a model based on these points, and then judge whether the

remaining data points belong to the inlier set by calculating their distances to the model

@ Accurately estimate model parameters even in the presence of noise and outliers |

@ The specific steps -

100 A

* Randomly select a small subset of data, called the inlier set

Response

0 ¢  wlem, PuaghbNhtp sl

* Fit a model based on the inlier set

—100 A

* Calculate the distances between the remaining data points and the model, _.. e
e Outliers

and classify these points as inliers or outliers based on a certain threshold = = 5 R
* |f the number of inliers reaches a preset threshold, the algorithm exits and the current model is considered
good
* |If the number of inliers is not enough, repeat steps 1-4 until the maximum iteration times are reached

@ Parameters such as threshold and iteration times need to be preset



