
Core Software of STCF

Teng LI on behalf of the STCF core software development team

Shandong University

2024-7-9

 STCF 2024 Workshop, LZU

Introduction

 The task of the STCF core software

 To fulfill official offline data processing tasks, i.e. detector simulation, digitization, calibration and
reconstruction

 Provide a common platform for users to develop and embed analysis code

 The scope of the STCF core software

2

• The underlying framework

• Event data management

• Detector description and conditions data

management

• Event display

• Support of ML, parallel computing, and

heterogeneous computing

• Software and physics validation

• Software build, installation and distribution

Introduction

 Main R&D challenges and innovations for STCF core software

 The huge data volume (~100 times of BESIII) requires much more advanced performance
 Relying on pure CPU resource to process exabytes of data is

hardly realistic under previous cost-model

 Parallel computing, and heterogeneous resources, like GPUs, or
FPGAs need to be supported to overcome the challenges.

 The core software needs to provide ready-to-use development
and run time environment for heterogeneous processers.

 Support of flexible ML inference is nesessary

 Adoption of common software developed for future colliders
 OSCAR is developed partially based on Key4hep, including

EDM based on podio, geometry based on DD4hep etc.

3

Key4hep
Thomas Madlener,

 Epiphany Conference 2021

Underlying Framework: SNiPER

 The underlying framework builds the skeleton of OSCAR
 Provide basic functionalities of event loop control, algorithm scheduling, thread management, user

interface, job configuration, logging etc.

 OSCAR adopts SNiPER as the underlying framework
 Developed since 2012, maintained by 10+ developers from IHEP, SDU, SYSU etc.

 Adopted by JUNO (neutrino), LHAASO (cosmic ray), nEXO (neutrinoless double beta decay) and HERD
(dark matter)

 Advantages of SNiPER
 Lightweighted, efficient and highly extendable. Flexible data processing chain.

 Efficient multithreading. C++/Python hybrid programing.

4

GlobalStore

Underlying Framework: SNiPER
 Advantages of SNiPER

 Lightweighted, efficient and highly extendable. Flexible data processing chain.

 Efficient multithreading. C++/Python hybrid programing.

5OSCAR Python UI

Event Data Management: Requirements

6

 Event data management is the most crucial part of the framework

 Provide tools to define the Event Data Model (EDM)
 The definition of physics event data (MC particles, hits, readouts, tracks, clusters,

reconstructed particles),
 Construct relationship between data objects (e.g. which particle makes these hits? Which

hists are used to fit a track, etc.)

 Provide automated memory management and data I/O functionalities

 Provide backward and forward compatibility, very important for long time running of STCF.

 Guarantee thread-safety, and provide high performance for MT applications

STCF Applications

Event Data Model and of OSCAR

7

EDM classes defined in OSCAR

code generator

YAML

Based on YAML definition, generate EDM C++ code accordingly

Transient Event Store and Data I/O

 Transient Event Store (TES) is where EDM objects are stored in memory
 TES in OSCAR is developed based on podio::EventStore

 User Algorithms access event data via collections

par par par ...
mcpars

hit hit hit ...
mdchits

hit hit hit ...
mdcdigi

trk trk trk ...
track candidates

trk trk trk ...
track

cluster cluster ...
cluster

TES event

metadata

DetSimAlg TrackFinder TrackFitter

GET
Collection

PUT
Collection

Data I/O Implementation of TES and data I/O
• PodioDataSvc
• PodioInputSvc
• PodioOutputSvc

Parallelized Event Data Management

9

 To enable parallelized data processing, a GlobalStore is developed based on podio
 Re-implement podio::EventStore to cache multiple events (each within one data slot)

 Use several condition lock to enable safety exchanging data between threads

 I/O services are binded to dedicated I/O threads, to ensure performance and flexible post- or
pre-processing

 Users could switch serial/parallel by just changing job configuration

Detector Description Management: Requirements

 A powerful detector description management system is necessary across the full offline
data processing workflow

 Provide simple method for geometry description definition

 Provide consistent detector description for all applications

 Provide geometry conversion for different applications, and versioning management

 Provide interface for conditions data and detector alignment

 Provide simple and ready-to-use interfaces for applications

10

Geometry Management System

 Geometry Management System (GMS) in OSCAR is based on DD4hep
 Single source of detector information for detector description, simulation

reconstruction and event display

 Complete geometry defined with XML files and C++ parser
 Various plugins for applications
 Interface for alighment and conditions data

11

Detector and Event Display

 A common geometry and event display system is being developed

 Based on Web3D technology and the open-source JSRoot framework

 3D engine and graphic libbrary based on Three.JS

 Using the Vue.js HTML5 development framework to implement the Web interface

 Reducing 3D motion lag by the multi-threading capabilities of Web Worker framework

 Geometry information from detector description from DD4hep (XML), and event data read
from podio

12

XML
DD4hep

CPP

podio

Parallelized Detector Simulation

13

 Based on the MT-SNiPER and parallelized DM system, parallelized detector
simulation applications are developed

 Basic performance tests show promising scalability

Fast ECAL Simulation based on GAN

14

 A ECAL fast simulation software based on DCGAN is being developed and optimized

 Integrate fast simulation and Geant4-based full simulation

 Expect to speed up the ECAL simulation by 1-2 orders
of magnitude

Geant4 DCGAN

full simulation:
~1s/per rhopi

Machine Learning Model Integration

 ONNX Runtime has been integrated with OSCAR to support runtime inference
 Lot’s of applications in OSCAR are based on ML models, such

as fast simulation, reconstruction, PID etc.

 As an easy and unified way to integrate different models in
OSCAR and run inference easily

 Convert from other models to ONNX, such as Tensorflow,
PyTorch etc.

 Potentially to accelerate inference of larger model on different
hardware platform (CPU/GPU)

15

DTOF PID CNN model

Automated Software Validation

 Software validation system is developed, to support building software validation on
different levels

 Unit test, integrated test, software performance profiling and physics result validation

 Integrated with Gitlab Action system for automated validation

 Used CTest to integrate validation cases integrated with CI system

 Trigger validation jobs on different levels on schedule/commits

16

Summary

 We introduced the basic design and functionalities of STCF core software

 Developed partially based on Key4hep

 Many components are extended specificlly for STCF, but are also re-usable by other
experiments

 Based on the core components, many STCF applications are (being) developed

 Detector simulation, reconstruction algorithms, event display, analysis toolkit including
particle ID, Vertex/KineticFit, RDataframe based analysis framework etc.

 On-going physics analysis studies with MC data are in progress

 We have been continuously improving the core software

 Software and physics performance has been continuously improved

 Many applications are being developed based on concurrent/heterogeneous
computing and machine learning

17

