

Electromagnetic Calorimeter Software for Super Tau-Charm Facility

Bo Wang

University of Science and Technology of China State Key Laboratory of Particle Detection and Electronics (On behalf of the STCF ECAL working group) 2024年超级陶粲研讨会

Super Tau-Charm Facility

Electron-positron collider experiment

- □ High luminosity: beyond $0.5 \times 10^{35} cm^{-2} \cdot s^{-1}$ @ 4GeV
- \square Wide energy region: center-of-mass energy range of 2~7 GeV

Requirement for ECAL

Requirements for ECAL

□ Fast response

- Challenge of high Luminosity
 - High count rate
 - Extremely high background

□ High precision

- Energy resolution
 - Better than 2.5% @1GeV
- Position resolution
 - Better than 5mm @1GeV
- \succ Time resolution
 - Better than 300ps @1GeV

Energy distribution for photons

4

ECAL Design

□ Total absorption calorimeter

- > Barrel: $51 \times 132 = 6732$
- > Endcap: $3 \times (85 + 102 + 136) \times 2 = 1938$
- Crystal Size:
 - $5 \times 5 \times 28(15X_0) \text{ cm}^3$

□ Sensitive Unit

- Pure CsI (pCsI) crystal
 - Fast decay time (~30ns)
 - Good radiation hardness
 - Low light yield
- Avalanche photodiode (APD)
 - Short wavelength type
 - Large area $(10 \times 10 \ mm^2 \times 4)$

ECAL Setup

□ "Dead Material"

- ➤ 150-µm Teflon reflective film
- > 75-µm polyethylene insulating film
- > 75-µm Al electrostatic shielding film
- No supporting material
- □ Light Yield: 100 p.e./MeV
- □ Light Collection Non-uniformity
 - > collection efficiency: $\epsilon(l) = 95\% + l/L \times 5\%$

Setup

- $\Box \sigma_{noise} = 1.0 \text{ MeV}$
- $\square E_{hit_thres} = 5.0 \text{ MeV}$
- Secondary Particles Hit APD

320cm

- □ Charge sensitive amplifier and pole-zero cancellation with shaping time 100 ns
- □ High and Low Gain (300 MeV/3000MeV)
- □ 16-bit ADC (~16000 channels) with 80 MHz sampling rate

Based on OSCAR

□ OSCAR: Offline Software of Super Tau-Charm Facility

Simulation Algorithm

□ Based on Geant4 Simulation

Process the information for each Geant4 step

- Data Model (layer as a unit)
 - Thickness 2cm as a layer unit
 - Each unit with a energy-time distribution: points with (E,T)
 - ➢ Bin width 500ps for energy-time distribution
 - ✓ Save storage space
 - ✓ Minimal loss of information

Digitization Algorithm

Waveform shaping

Waveform fitting

10

Digitization Algorithm

Waveform fitting

□ Template fit to extract Amplitude and Time

- > Find the points around amplitude peak to do the template fitting
- > Template shape function: $f(t) = A \times f(t \tau) + p$
- $\lambda \chi^{2} = \sum_{i,j} (y_{i} A \cdot f(t_{i} \tau) p) \cdot S_{ij}^{-1} \cdot (y_{j} A \cdot f(t_{j} \tau) p)$ $\lambda pply \frac{\partial \chi^{2}}{\partial A} = 0, \frac{\partial \chi^{2}}{\partial \tau} = 0$

Where y_i and t_i are from readout waveform; the electronics foundation p in digitization is p = 0; A and τ are the amplitude and time from fitting result; S_{ii} is the noise covariance matrix.

□ Pipeline fit for pile-up recovery

Reconstruction Algorithm

□ A complete reconstruction algorithm of ECAL is developed

- ➢ Fitted by Crystal Ball function
- Energy resolution defined by $\sigma_E = \frac{FWHM}{2.355}$

Challenges of high background

Luminosity-related Background
 Radiative BhaBha Scattering (RBB)

Two Photon Process

Variation of the background counting rate with polar angle **Counting rate reaches the order of MHz**

□ Single-beam related Background

- Thouschek Effect
- Coulomb Scattering
- Bremsstrahlung

Momentum distribution of background particles

Most background particles concentrate in the low momentum region

Pile-up recovery

- Pile-up is superimposed on the signal waveform
 - Inaccurate fit results of amplitude and time
 - ➤ Larger resolution of energy and time

D Pipeline fitting method

- Real-time online processing
- > Template fit once for each fitting
- Fit successful
 - \rightarrow Remove template
 - \rightarrow Ongoing processing

□ Multi-template fit

Has been used to study the capability for pile-up recovery

Pile-up Recovery

Pipeline fit

- **D** Pipeline fitting method
 - Real-time online processing
 - Template fit once for each fitting
 - Each fitting begin with different ADC point
 - Fit successful
 - $A > E_{thr}$
 - $\triangle T < 12.5/2$
 - \rightarrow Remove template
 - \rightarrow Ongoing processing

- Optimization

- **D** Pipeline fitting method
 - Real-time online processing
 - Template fit once for each fitting
 - Each fitting begin with different ADC point
 - Add one more fitting between two ADC points
 - Fit successful
 - $A > E_{thr}$
 - $\triangle T < 12.5/2$
 - $\chi^2 / ndf < 3$: $\chi^2 / ndf = [\sum_{i,j} (y_i - A \cdot f(t_i - \tau) - p) \cdot S_{ij}^{-1} \cdot (y_j - A \cdot f(t_j - \tau) - p)] / ((n - 2) \cdot (\sigma_{nos}^2 + (A \cdot 0.01)^2))$
 - \rightarrow Cache and compared with next fit
 - \rightarrow Remove template
 - → Ongoing processing

2024/7/9

Pipeline fit

15

□ The performance between pipeline fit and single template fit for signal process without background

> Energy and time resolutions can achieve similar performance

Reconstruction Performance

Energy Reconstruction

Reconstruction Performance

Time Reconstruction

Reconstruction Performance

Position Reconstruction

 Splitting algorithms (used by BESIII and Panda)

$$\succ a_{ik} = \frac{E_k \times \exp(c \times \frac{r_{ik}}{R_M})}{\sum_{j=1}^m E_j \times \exp(c \times \frac{r_{ij}}{R_M})}$$

□ Barycenter method

$$\succ X_c = \sum_j^N W_j(E_j) \cdot X_j / \sum_j^N W_j(E_j)$$

Where $W_j(E_j) = \max\{0, a - \sqrt{-\ln\left(E_j / \sum_j^N E_j\right)}\}$

✓ Meet the requirement

- □ The software of ECAL has been established based on OSCAR
- □ The simulated performance of ECAL meets requirements with the background concerned
 - ✓ Energy measurement with 2.27% @ 1 GeV
 - ✓ Time measurement with 153 ps @ 1 GeV
 - ✓ Position measurement with 4.0 mm @ 1 GeV

Thanks for your listening!

Back up

ECAL Design —— Sensitive Unit

□ Pure CsI crystal + APD photo-device

- Pure CsI (pCsI) crystal
 - ✓ Fast decay time
 - ✓ Good radiation hardness
 - ✓ Low light yield
- ➤ Crystal Size:
 - \checkmark Total radiation length
 - $15 X_0$ (28 cm)
 - ✓ End face size front end: $\sim 5 \times 5 \ cm^2$ back end: $\sim 6.5 \times 6.5 \ cm^2$

Avalanche photodiode (APD)

- \checkmark Short wavelength type
- $\checkmark \quad \text{Large area} \ (10 \times 10 \ mm^2 \times 4)$

APD

ECAL pCsI crystal unit

pCsl

Crystal	Pure Csl
Density (g/cm ³)	4.51
Melting Point (°C)	621
Radiation Length (cm)	1.86
Moliere Radius (cm)	3.57
Refractive index	1.95
Hygroscopicity	Slight
Luminescence (nm)	310
Decay time (ns)	30 6
Light yield (%)	3.6 1.1
Dose rate dependent	No
D(LY)/dT (%/°C)	-1.4
Experiment	KTeV
	Mu2e

Simulation Algorithm

Data Model

□ Sizes of thickness and time bin width have been optimized

- > No large difference of time distribution for different thickness
 - Consider the non-uniformity may vary in the future : 2cm
- Different time bin width with different time resolution and central value
 - Difference in central value approximately equivalent to a shift of the template
 - Consider the resolution and the similarity to the template: 500ps

Simulation Algorithm

Data Model

D Energy distribution and comparison with template

Template Fitting

• Template shape function: $f(t) = A \times f(t - \tau) + p$

•
$$\chi^2 = \sum_{i,j} (y_i - A \cdot f(t_i - \tau) - p) \cdot S_{ij}^{-1} \cdot (y_j - A \cdot f(t_j - \tau) - p)$$

• Apply $\frac{\partial \chi^2}{\partial A} = 0, \frac{\partial \chi^2}{\partial \tau} = 0, \frac{\partial \chi^2}{\partial p} = 0$:

$$\begin{cases} \sum_{i,j} f_{ki} \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0 \\ \sum_{i,j} f'_{ki} \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0 \\ \sum_{i,j} 1 \cdot S_{ij}^{-1} \cdot (y_j - Af_{kj} - Bf'_{kj} - p) = 0 \end{cases}$$

$$\begin{pmatrix} F_k \cdot S^{-1} \cdot F_k^T & F_k \cdot S^{-1} \cdot F_k'^T & F_k \cdot S^{-1} \cdot I \\ F'_k \cdot S^{-1} \cdot F_k^T & F'_k \cdot S^{-1} \cdot F_k'^T & F'_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T & I \cdot S^{-1} \cdot F_k'^T & I \cdot S^{-1} \cdot I \end{pmatrix} \cdot \begin{pmatrix} A \\ B \\ p \end{pmatrix} = \begin{pmatrix} F_k \cdot S^{-1} \cdot Y \\ I \cdot S^{-1} \cdot Y \end{pmatrix}$$

$$\begin{pmatrix} A \\ B \\ p \end{pmatrix} = \begin{pmatrix} F_k \cdot S^{-1} \cdot F_k^T & F_k \cdot S^{-1} \cdot F_k'^T & F_k \cdot S^{-1} \cdot I \\ F'_k \cdot S^{-1} \cdot F_k^T & F'_k \cdot S^{-1} \cdot F'_k' & F'_k \cdot S^{-1} \cdot I \\ I \cdot S^{-1} \cdot F_k^T & I \cdot S^{-1} \cdot F'_k' & I \cdot S^{-1} \cdot I \end{pmatrix}^{-1} \cdot \begin{pmatrix} F_k \cdot S^{-1} \cdot Y \\ F'_k \cdot S^{-1} \cdot Y \\ I \cdot S^{-1} \cdot F_k' & I \cdot S^{-1} \cdot F'_k' & I \cdot S^{-1} \cdot I \end{pmatrix}$$

Nonnegative Least Square (NNLS)

Algorithm *fnnls* :

Input: $\mathbf{A} \in \mathbf{R}^{m \times n}$, $\mathbf{b} \in \mathbf{R}^m$ Output: $\mathbf{x}^* \ge 0$ such that $\mathbf{x}^* = \arg \min \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$. Initialization: $P = \emptyset, R = \{1, 2, \cdots, n\}, \mathbf{x} = \mathbf{0}, \mathbf{w} = \mathbf{A}^T \mathbf{b} - (\mathbf{A}^T \mathbf{A}) \mathbf{x}$ repeat

- 1. Proceed if $R \neq \emptyset \land [\max_{i \in R}(w_i) > tolerance]$
- 2. $j = \arg \max_{i \in R} (w_i)$
- 3. Include the index j in P and remove it from R
- 4. $\mathbf{s}^P = [(\mathbf{A}^T \mathbf{A})^P]^{-1} (\mathbf{A}^T \mathbf{b})^P$ 4.1. Proceed if $\min(\mathbf{s}^P) \leq 0$ 4.2. $\alpha = -\min_{i \in P} [x_i/(x_i - s_i)]$ 4.3. $\mathbf{x} := \mathbf{x} + \alpha(\mathbf{s} - \mathbf{x})$ 4.4. Update R and P 4.5. $\mathbf{s}^P = [(\mathbf{A}^T \mathbf{A})^P]^{-1} (\mathbf{A}^T \mathbf{b})^P$ 4.6. $\mathbf{s}^R = \mathbf{0}$ 5. $\mathbf{x} = \mathbf{s}$ 6. $\mathbf{w} = \mathbf{A}^T (\mathbf{b} - \mathbf{A}\mathbf{x})$

Convention:

- b: A real pulse with m points
- x: fitted amplitudes for n pulses
- A: the ith column of A represents the template for the ith pulse and of course each template has m points.
- P: passive set currently not fixed amps
- R: active set currently fixed amplitudes

Multi-template

Pile-up Recovery

Multi-template fit

Fit all the potential waveforms with template
 Isolate signals by time
 The fit minimizes the χ² defined as:

$$\chi^{2} = \left(\sum_{j=1}^{N} A_{j} \overrightarrow{p_{j}} - \vec{S}\right)^{T} C^{-1} \left(\sum_{j=1}^{N} A_{j} \overrightarrow{p_{j}} - \vec{S}\right)^{T}$$

Where:

N is the number of templates; vector \vec{S} comprise the readout samples; vector $\overrightarrow{p_j}$ is the waveform template; A_j are the amplitudes, which are obtained by the fit; C is the noise covariance matrix.

