

Observable CP-violation in charmed baryons decays with SU(3) symmetry analysis

Zhi-Peng Xing

work with Jin Sun, Ruilin Zhu

arxiv:2407.00426

2024超级陶粲装置研讨会,07.08 兰州

- Background of charmed baryon two body decays (CBTD)
- Global analysis of CBTD in IRA
- Equivalence of IRA and TDA in CBTD
- The strong phase of each diagram and possible the CPV

- Lower threshold
- More experiment data
- Richer phenomena
- Good in SU(3) symmetry

The charmed baryon two body decays(CBTD) Symmetry analysis: $SU(3)_{F}$ symmetry!

No dynamics

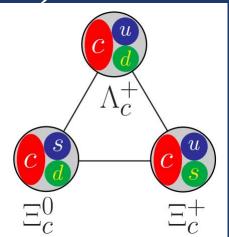
SU(3) analysis in

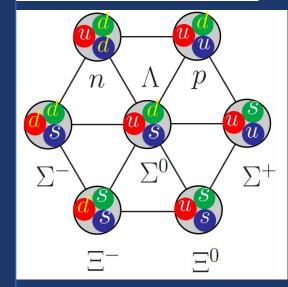
recent years:

ightarrow

$\Gamma(\Lambda_c^+ \to \Sigma^0 \pi^+) = \Gamma(\Lambda_c^+ \to \Sigma^+ \pi^0)$ SU(3) relations $\frac{\Lambda_c^+ \to \Sigma^0 \pi^+}{\Lambda_c^+ \to \Sigma^+ \pi^0}$ 1.29 ± 0.07 1.25 ± 0.10

- Nucl. Phys. B 956, 115048 (2020)
- JHEP 02, 165 (2020)
- **JHEP 03, 143 (2022)**
- **JHEP 03, 143 (2022)**
- Eur. Phys. J. C 82, no.4, 297 (2022)
- JHEP 09, 035 (2022)
- **JHEP 02, 235 (2023)**
- arXiv:2301.07443 •
- Phys. Rev. D 108, no.5, 053004 (2023)
- Phys. Rev. D 109, no.11, 114027 (2024)
- Phys. Rev. D 109, no.7, L071302 (2024)
- arXiv:2401.15926
- arXiv:2404.19166





 f^{b}_{15}

 g^a

 g_{15}^{b}

 $f_{6}^{b} =$

 $f_{15}^{c} =$

 g_6^b :

 g_{15}^{c}

	Branching ratio					
Channel	Latest measurement in 2022 (%)	Experimental data (%)	Previous work (%) [14]	This work (%)		
$\Lambda_c^+ \to p K_S^0$		1.59 ± 0.08 [37]	1.587 ± 0.077	1.606 ± 0.077		
$\Lambda_c^+ \rightarrow p\eta$		0.142 ± 0.012 [37]	0.127 ± 0.024	0.141 ± 0.011		
$\Lambda_c^+ \to p\eta'$	$\begin{array}{c} 0.0562\substack{+0.0246\\-0.0204}\pm0.0026\ [30]\\ 0.0473\pm0.0082\pm0.0046\pm0.0024\ [34] \end{array}$	$0.0484 \pm 0.0091 [30,34]$	0.27 ± 0.38	0.0468 ± 0.0066		
$\Lambda_c^+ \rightarrow \Lambda \pi^+$	$1.31 \pm 0.08 \pm 0.05$ [33]	1.30 ± 0.06 [33,37]	1.307 ± 0.069	1.328 ± 0.055		
$\Lambda_c^+ \rightarrow \Sigma^0 \pi^+$	$1.22 \pm 0.08 \pm 0.07$ [33]	1.27 ± 0.06 [33,37]	1.272 ± 0.056	1.260 ± 0.046		
$\Lambda_c^+ \to \Sigma^+ \pi^0$		1.25 ± 0.10 [37]	1.283 ± 0.057	1.274 ± 0.047		
$\Lambda_c^+ \to \Xi^0 K^+$		0.55 ± 0.07 [37]	0.548 ± 0.068	0.430 ± 0.030		
$\Lambda_c^+ \to \Lambda^0 K^+$	$\begin{array}{c} 0.0621 \pm 0.0044 \pm 0.0026 \pm 0.0034 \ [31] \\ 0.0657 \pm 0.0017 \pm 0.0011 \pm 0.0035 \ [35] \end{array}$	0.064 ± 0.003 [31,35,37]	0.064 ± 0.010	0.0646 ± 0.0028		
$\Lambda_c^+ \rightarrow \Sigma^+ \eta$	$0.416 \pm 0.075 \pm 0.021 \pm 0.033$ [36]	0.32 ± 0.043 [36,37]	0.45 ± 0.19	0.329 ± 0.042		
$\Lambda_c^+ o \Sigma^+ \eta'$	$0.314 \pm 0.035 \pm 0.011 \pm 0.025$ [36]	0.437 ± 0.084 [36,37]	1.5 ± 0.6	0.444 ± 0.070		
$\Lambda_c^+\to \Sigma^0 K^+$	$\begin{array}{c} 0.047 \pm 0.009 \pm 0.001 \pm 0.003 \ [32] \\ 0.0358 \pm 0.0019 \pm 0.0006 \pm 0.0019 \ [35] \end{array}$	$0.0382 \pm 0.0025 \; [32,35,37]$	0.0504 ± 0.0056	0.0381 ± 0.0017		
$\Lambda_c^+ \rightarrow n\pi^+$	$0.066 \pm 0.012 \pm 0.004$ [33]	0.066 ± 0.0126 [33]	0.035 ± 0.011	0.0651 ± 0.0026		
$\Lambda_c^+ \rightarrow \Sigma^+ K_s^0$	$0.048 \pm 0.014 \pm 0.002 \pm 0.003$ [32]	0.048 ± 0.0145 [32]	0.0103 ± 0.0042	0.0327 ± 0.0029		
$\Xi_c^+ \to \Xi^0 \pi^+$		1.6 ± 0.8 [37]	0.54 ± 0.18	0.887 ± 0.080		
$\Xi_c^0 \to \Lambda K_S^0$		0.32 ± 0.07 [37]	0.334 ± 0.065	0.261 ± 0.043		
$\Xi_c^0 \to \Xi^- \pi^+$		1.43 ± 0.32 [37]	1.21 ± 0.21	1.06 ± 0.20		
$\Xi_c^0 \rightarrow \Xi^- K^+$	2222	0.039 ± 0.012 [37]	0.047 ± 0.0083	0.0474 ± 0.0090		
$\Xi_c^0 \rightarrow \Sigma^0 K_S^0$		0.054 ± 0.016 [37]	0.069 ± 0.024	0.054 ± 0.016		
$\Xi_c^0 \to \Sigma^+ K^-$		0.18 ± 0.04 [37]	0.221 ± 0.068	0.188 ± 0.039		

0.0155 ± 0.0040	$f_6^c = 0.0356 \pm 0.0071$
-0.0161 ± 0.0042	$f^d_{15} = -0.0253 \pm 0.0031$
$= -0.039 \pm 0.012$	$g_6^c = 0.121 \pm 0.019$
$= 0.1134 \pm 0.0074$	$g_{15}^d = -0.0387 \pm 0.0085$
0.0215 ± 0.0092	$f_6^d = -0.0138 \pm 0.0080$
0.0149 ± 0.0080	$f^e_{\ 15} = 0.0798 \pm 0.0087$
$= -0.240 \pm 0.011$	$g_6^d = -0.067 \pm 0.014$
$= 0.014 \pm 0.018$	$g_{15}^e = 0.0209 \pm 0.0092$

SU(3) symmetry parameters from fitting (χ^2 /d.o.f. = 1.21)

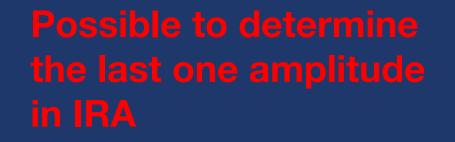
	Asymmetry parameter α					
Channel	Lastest measurement in 2022	Experimental data	Previous work [14]	This work		
$\alpha(\Lambda_c^+ \to pK_S^0)$		0.18 ± 0.45 [37]	0.19 ± 0.41	0.49 ± 0.20		
$\alpha(\Lambda_c^+ \to \Lambda \pi^+)$	$-0.755 \pm 0.005 \pm 0.003$ [35]	-0.755 ± 0.0058 [35,37]	-0.841 ± 0.083	-0.7542 ± 0.0058		
$\alpha(\Lambda_c^+ \to \Sigma^0 \pi^+)$	$-0.463 \pm 0.016 \pm 0.008$ [35]	-0.466 ± 0.0178 [35,37]	-0.605 ± 0.088	-0.471 ± 0.015		
$\alpha(\Lambda_c^+ \to \Sigma^+ \pi^0)$	$-0.48 \pm 0.02 \pm 0.02$ [36]	-0.48 ± 0.03 [36,37]	-0.603 ± 0.088	-0.468 ± 0.015		
$\alpha(\Xi_c^0 \to \Xi^- \pi^+)$		-0.64 ± 0.051 [37]	-0.56 ± 0.32	-0.654 ± 0.050		
$\alpha(\Lambda_c^+ \to \Sigma^0 K^+)$	$-0.54 \pm 0.18 \pm 0.09$ [35]	-0.54 ± 0.20 [35]	-0.953 ± 0.040	-0.9958 ± 0.0045		
$\alpha(\Lambda_c^+ \to \Lambda K^+)$	$-0.585 \pm 0.049 \pm 0.018$ [35]	-0.585 ± 0.052 [35]	-0.24 ± 0.15	-0.545 ± 0.046		
$\alpha(\Lambda_c^+ o \Sigma^+ \eta)$	$-0.99 \pm 0.03 \pm 0.05$ [36]	-0.99 ± 0.058 [36]	0.3 ± 3.8	-0.970 ± 0.046		
$\alpha(\Lambda_c^+ o \Sigma^+ \eta')$	$-0.46 \pm 0.06 \pm 0.03$ [36]	-0.46 ± 0.067 [36]	0.8 ± 1.9	-0.455 ± 0.064		

$\Xi_c^0 \to \Xi^0 \eta$	$\cos\phi(2a_6 + 2a_{15} + b_6 + b_{15} - d_6 + d_{15})/\sqrt{2} - \sin\phi(a_6 + a_{15} + c_6 + c_{15})$	
$\Xi_c^0 o \Xi^0 \eta'$	$\sin\phi(2a_6 + 2a_{15} + b_6 + b_{15} - d_6 + d_{15})/\sqrt{2} + \cos\phi(a_6 + a_{15} + c_6 + c_{15})$	
$\Xi_c^0 \to \Sigma^0 \eta$	$\sin\theta \left(\cos\phi \left(2a_6 + 2a_{15} + b_6 + b_{15} + c_6 + c_{15} + d_{15} - e_{15} \right) / 2 \right)$	
	$-\sin\phi\left(a_{6}+a_{15}-d_{6}+e_{15} ight)/\sqrt{2} ight)$	
$\Xi_c^0 \to \Sigma^0 \eta'$	$\sin\theta(\sin\phi\left(2a_{6}+2a_{15}+b_{6}+b_{15}+c_{6}+c_{15}+d_{15}-e_{15}\right)/2$	
	$-\cos\phi\left(a_{6}+a_{15}-d_{6}+e_{15} ight)/\sqrt{2} ight)$	
$\Xi_c^0 o \Lambda \eta$	$\left(-\cos\phi\left(6a_{6}+6a_{15}+b_{6}+b_{15}+c_{6}+c_{15}-2d_{6}+3d_{15}+e_{15} ight)/(2\sqrt{3})$	
	$-\sin\phi\left(-3a_{6}-3a_{15}-2b_{6}-2b_{15}-2c_{6}-2c_{15}+d_{6}+e_{15}\right)/\sqrt{6}\right)\sin\theta$	
$\Xi_c^0 o \Lambda \eta'$	$\left(-\sin\phi\left(6a_{6}+6a_{15}+b_{6}+b_{15}+c_{6}+c_{15}-2d_{6}+3d_{15}+e_{15}\right)/(2\sqrt{3})\right)$	
	$+\cos\phi\left(-3a_{6}-3a_{15}-2b_{6}-2b_{15}-2c_{6}-2c_{15}+d_{6}+e_{15} ight)/\sqrt{6} ight)\sin heta$	
$\Xi_c^0 o n\eta$	$\sin^2\theta(\cos\phi\left(2a_6+2a_{15}+c_6+c_{15}+d_{15}\right)/\sqrt{2}$	
$\square_c \rightarrow m$	$-\sin\phi\left(a_{6}+a_{15}+b_{6}+b_{15}-d_{6} ight) ight)$	
$\Xi_c^0 o n\eta'$	$\sin^2\theta(\sin\phi\left(2a_6+2a_{15}+c_6+c_{15}+d_{15}\right)/\sqrt{2}$	
	$+\cos\phi\left(a_{6}+a_{15}+b_{6}+b_{15}-d_{6} ight) ight)$	

$$\begin{split} &Br(\Xi_c^0 \to \Xi^0 \eta) \sim [0.193, 0.446]\%, \\ &Br(\Xi_c^0 \to \Sigma^0 \eta) \sim [0.0118, 0.0333]\%, \\ &Br(\Xi_c^0 \to \Lambda^0 \eta) \sim [0.0039, 0.0139]\%, \\ &Br(\Xi_c^0 \to n\eta) \sim [0.00009, 0.00066]\%. \\ &Br(\Xi_c^0 \to \Xi^0 \eta') \geq 0.002\%, \\ &Br(\Xi_c^0 \to \Sigma^0 \eta') \geq 9 \times 10^{-7}, \\ &Br(\Xi_c^0 \to \Lambda^0 \eta') \geq 4.8 \times 10^{-6}, \\ &Br(\Xi_c^0 \to n\eta') \geq 6 \times 10^{-8}. \end{split}$$

There is one parameter a' still can not be determine.

$$\begin{split} Br(\Lambda_c^+ \to p\pi^0) &= (0.0156^{-0.0072}_{-0.0058} \pm 0.002)\%, \\ Br(\Lambda_c^+ \to p\eta) &= (0.163 \pm 0.031 \pm 0.011)\%, \\ Br(\Lambda_c^+ \to pK_L) &= (1.67 \pm 0.06 \pm 0.04)\%, \\ Br(\Xi_c^0 \to \Xi^0\pi^0) &= (0.69 \pm 0.03 \pm 0.05 \pm 0.13)\%, \\ Br(\Xi_c^0 \to \Xi^0\eta) &= (0.16 \pm 0.02 \pm 0.02 \pm 0.03)\%, \\ Br(\Xi_c^0 \to \Xi^0\eta') &= (0.12 \pm 0.03 \pm 0.01 \pm 0.02)\%, \\ \alpha(\Xi_c^0 \to \Xi^0\pi^0) &= -0.90 \pm 0.15 \pm 0.23. \end{split}$$



Phys. Rev. D 109, no.9, L091101 (2024) arXiv:2406.04642 arXiv:2406.18083

 $\langle P, T_8 | i \mathcal{H} | T_{c\bar{3}} \rangle$

$$P = \begin{pmatrix} \frac{\pi^{0} + \eta_{q}}{\sqrt{2}} & \pi^{+} & K^{+} \\ \pi^{-} & \frac{-\pi^{0} + \eta_{q}}{\sqrt{2}} & K^{0} \\ K^{-} & \bar{K}^{0} & \eta_{s} \end{pmatrix}$$

$$= \epsilon_{ijm} T_{8k}^{m}$$

$$T_{c\bar{3}} = \begin{pmatrix} 0 & \Lambda_c^+ & \Xi_c^+ \\ -\Lambda_c^+ & 0 & \Xi_c^0 \\ -\Xi_c^+ & -\Xi_c^0 & 0 \end{pmatrix}$$

SU(3) decompositions in IRA

$$\begin{aligned} (H_{\bar{6}})_2^{31} &= -(H_{\bar{6}})_2^{13} = 1, \quad (H_{15})_2^{31} = (H_{15})_2^{13} = 1, \\ (H_{15})_3^{31} &= (H_{15})_3^{13} = -(H_{15})_2^{21} = -(H_{15})_2^{12} = \sin\theta, \\ (H_{\bar{6}})_3^{31} &= -(H_{\bar{6}})_3^{13} = (H_{\bar{6}})_2^{12} = -(H_{\bar{6}})_2^{21} = \sin\theta, \\ (H_{\bar{6}})_3^{21} &= -(H_{\bar{6}})_3^{12} = (H_{15})_3^{21} = (H_{15})_3^{12} = \sin^2\theta, \end{aligned}$$

$$T_8 = \begin{pmatrix} \frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & \Sigma^+ & p\\ \Sigma^- & -\frac{\Sigma^0}{\sqrt{2}} + \frac{\Lambda}{\sqrt{6}} & n\\ \Xi^- & \Xi^0 & -\frac{2\Lambda}{\sqrt{6}} \end{pmatrix}$$

 T_{8ijk}

 $\mathcal{M}^{IRA} = a_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_k^j P_l^l$ $+ b_{15} \times (T_{c3})_i (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_k^l P_l^j$ $+ c_{15} \times (T_{c3})_i (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_l^j P_k^l$ $+ d_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_i^{\{jk\}} (\overline{T_8})_i^l P_k^i$ + $e_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_i^{\{jk\}} (\overline{T_8})_i^i P_k^l$ $+ a_6 \times (T_{c3})^{[ik]} (H_{\overline{6}})_{\{ii\}} (\overline{T_8})^j_k P_l^l$ $+ b_6 \times (T_{e\bar{3}})^{[ik]} (H_{\overline{6}})_{\{ij\}} (\overline{T_8})^l_k P^j_I$ + $c_6 \times (T_{c\bar{3}})^{[ik]} (H_{\overline{6}})_{\{ij\}} (\overline{T_8})^j_l P^l_k$ + $d_6 \times (T_{c\bar{3}})^{[lk]} (H_{\overline{\kappa}})_{\{ij\}} (\overline{T_8})^i_k P_l^j$.

SU(3) decompositions in IRA

$$\begin{split} (H_{\bar{6}})_2^{31} &= -(H_{\bar{6}})_2^{13} = 1, \quad (H_{15})_2^{31} = (H_{15})_2^{13} = 1, \\ (H_{15})_3^{31} &= (H_{15})_3^{13} = -(H_{15})_2^{21} = -(H_{15})_2^{12} = \sin\theta, \\ (H_{\bar{6}})_3^{31} &= -(H_{\bar{6}})_3^{13} = (H_{\bar{6}})_2^{12} = -(H_{\bar{6}})_2^{21} = \sin\theta, \\ (H_{\bar{6}})_3^{21} &= -(H_{\bar{6}})_3^{12} = (H_{15})_3^{21} = (H_{15})_3^{12} = \sin^2\theta, \end{split}$$

channel	exp		Case I		
channel	Br(%)	α	Br(%)	α	
$\Lambda_c^+ \rightarrow p \pi^0$	0.0156(75)		0.0174(53)		
$\Lambda_c^+ \to p K_S^0$	1.59(7)	0.2(5)	1.646(48)	0.41(12)	
$\Lambda_c^+ \to p K_L^0$	1.67(7)		1.646(48)		
$\Lambda_c^+ \to p\eta$	0.158(11)		0.158(11)		
$\Lambda_c^+ o p\eta'$	0.048(9)		0.0464(61)		
$\Lambda_c^+\to\Lambda\pi^+$	1.29(5)	-0.755(6)	1.305(47)	-0.7538(60)	
$\Lambda_c^+\to \Sigma^0\pi^+$	1.27(6)	-0.466(18)	1.259(46)	-0.471(15)	
$\Lambda_c^+\to \Sigma^+\pi^0$	1.24(9)	-0.484(27)	1.273(46)	-0.469(15)	
$\Lambda_c^+\to \Xi^0 K^+$	0.55(7)	0.01(16)	0.417(29)		
$\Lambda_c^+\to\Lambda^0 K^+$	0.0642(31)	-0.58(5)	0.0641(29)	-0.556(44)	
$\Lambda_c^+ \to \Sigma^+ \eta$	0.32(5)	-0.99(6)	0.327(49)	-0.9998(35)	
$\Lambda_c^+\to \Sigma^+\eta'$	0.41(8)	-0.46(7)	0.416(65)	-0.455(64)	
$\Lambda_c^+\to \Sigma^0 K^+$	0.0370(31)	-0.54(20)	0.0376(18)	-0.9971(36)	
$\Lambda_c^+ \to n\pi^+$	0.066(13)		0.0641(23)		
$\Lambda_c^+\to \Sigma^+ K^0_S$	0.047(14)		0.0311(29)		
$\Xi_c^+ \to \Xi^0 \pi^+$	1.6(8)		0.880(78)		
$\Xi_c^0 \to \Lambda K_S^0$	0.32(6)		0.248(29)		
$\Xi_c^0 \rightarrow \Xi^- \pi^+$	1.43(27)	-0.640(51)	1.17(18)	-0.701(45)	
$\Xi_c^0\to \Xi^- K^+$	0.039(11)		0.0520(80)		
$\Xi_c^0 \to \Sigma^0 K_S^0$	0.054(16)		0.056(16)		
$\Xi_c^0\to \Sigma^+ K^-$	0.18(4)		0.189(38)		
$\Xi_c^0 \to \Xi^0 \pi^0$	0.69(14)	-0.90(28)	0.153(48)	-0.45(13)	
$\Xi_c^0 \rightarrow \Xi^0 \eta$	0.16(4)		0.166(37)		
$\Xi_c^0 \to \Xi^0 \eta'$	0.12(4)		0.125(38)		

5 experimental data

 $\chi^2/d.o.f = 1.28$

excluded data $\begin{aligned} &\alpha(\Lambda_c^+\to\Xi^0K^+)=0.01\pm0.16\pm0.03\\ &Br(\Xi_c^0\to\Xi^0\pi^0)=(0.069\pm0.03\pm0.05\pm0.13)\%\\ &\text{predicction} \end{aligned}$

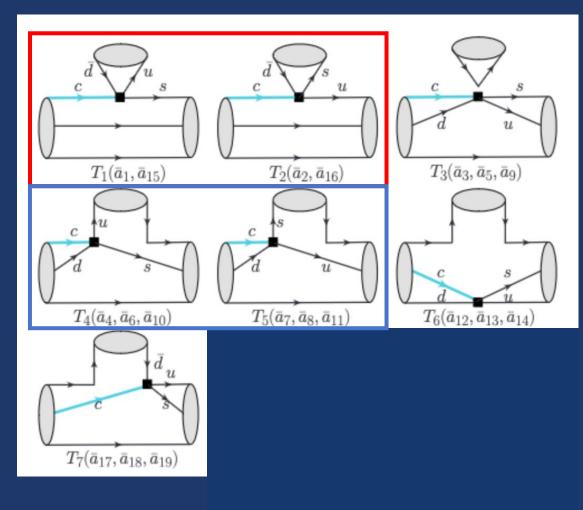
 $\alpha(\Lambda_c^+ \to \Xi^0 K^+) = 0.960 \pm 0.017$ $Br(\Xi_c^0 \to \Xi^0 \pi^0) = (0.153 \pm 0.48)\%$

Need consider the strong phase ?

$\mathcal{A}_{u}^{TDA} = \bar{a}_{1} T_{c\bar{3}}^{[ij]} H_{m}^{kl} (\overline{T}_{8})_{ijk} P_{l}^{m} + \bar{a}_{2} T_{c\bar{3}}^{[ij]} H_{m}^{kl} (\overline{T}_{8})_{ijl} P_{k}^{m}$	
$+\bar{a}_3 T_{c\bar{3}}^{[ij]} H_i^{kl} (\overline{T}_8)_{jkl} P_m^m$	$A_6^T = rac{1}{2} \left(ar{a}_3 - ar{a}_5 - 2ar{a}_9 - ar{a}_{13} + ar{a}_{14} ight),$
$+\bar{a}_4 T_{c\bar{3}}^{[ij]} H_i^{kl} (\overline{T}_8)_{jkm} P_l^m$	$B_6^T = rac{1}{2} \left(ar{a}_{13} - ar{a}_{14} - ar{a}_{17} + ar{a}_{18} - 2ar{a}_{19} ight),$
$+\bar{a}_{5}T_{c\bar{3}}^{[ij]}H_{i}^{kl}(\overline{T}_{8})_{jlk}P_{m}^{m}+\bar{a}_{6}T_{c\bar{3}}^{[ij]}H_{i}^{kl}(\overline{T}_{8})_{jmk}P_{l}^{m}$ $+\bar{a}_{7}T_{c\bar{3}}^{[ij]}H_{i}^{kl}(\overline{T}_{8})_{ilm}P_{k}^{m}+\bar{a}_{8}T_{c\bar{3}}^{[ij]}H_{i}^{kl}(\overline{T}_{8})_{jml}P_{k}^{m}$	$C_6^T = \frac{1}{2} \left(\bar{a}_4 - \bar{a}_7 - \bar{a}_{10} + \bar{a}_{11} - 2\bar{a}_{12} \right),$ $D_6^T = \frac{1}{2} \left(\bar{a}_4 - \bar{a}_7 - \bar{a}_{10} + \bar{a}_{11} - 2\bar{a}_{12} \right),$
	$D_6^T = \frac{1}{2} \left(\bar{a}_6 - \bar{a}_8 + \bar{a}_{10} - \bar{a}_{11} - \bar{a}_{13} + \bar{a}_{14} \right),$ $E_6^T = \frac{1}{2} \left(2\bar{a}_1 - 2\bar{a}_2 - \bar{a}_6 + \bar{a}_8 - \bar{a}_{10} + \bar{a}_{11} + \bar{a}_{13} \right)$
$+\bar{a}_{11}T_{c\bar{3}}^{[ij]}H_{i}^{kl}(\overline{T}_{8})_{lmj}P_{k}^{m}+\bar{a}_{12}T_{c\bar{3}}^{[ij]}H_{i}^{kl}(\overline{T}_{8})_{klm}P_{j}^{m}$	
$+\bar{a}_{13}T_{c\bar{3}}^{[ij]}H_{i}^{kl}(\overline{T}_{8})_{kml}P_{j}^{m}+\bar{a}_{14}T_{c\bar{3}}^{[ij]}H_{i}^{kl}(\overline{T}_{8})_{lmk}P_{j}^{m}$	2
$+\bar{a}_{15}T_{c\bar{3}}^{[ij]}H_{m}^{kl}(\overline{T}_{8})_{ikj}P_{l}^{m}+\bar{a}_{16}T_{c\bar{3}}^{[ij]}H_{m}^{kl}(\overline{T}_{8})_{ilj}P_{m}^{k}$	
$+\bar{a}_{17}T_{c\bar{3}}^{[ij]}H_m^{kl}(\overline{T}_8)_{ikl}P_j^m + \bar{a}_{18}T_{c\bar{3}}^{[ij]}H_m^{kl}(\overline{T}_8)_{ilk}P_j^m$	$D_{15}^{T} = \frac{1}{2} \left(\bar{a}_{6} + \bar{a}_{8} + \bar{a}_{10} + \bar{a}_{11} + \bar{a}_{13} + \bar{a}_{14} \right),$ $E_{15}^{T} = \frac{1}{2} \left(2\bar{a}_{1} + 2\bar{a}_{2} - \bar{a}_{6} - \bar{a}_{8} - \bar{a}_{10} - \bar{a}_{11} \right)$
$+\bar{a}_{19}T_{c\bar{3}}^{[ij]}H_m^{kl}(\overline{T}_8)_{klj}P_i^m.$	$ \begin{array}{c} L_{15} = 2 \\ -\bar{a}_{13} - \bar{a}_{14} + \bar{a}_{15} + \bar{a}_{16} + \bar{a}_{17} + \bar{a}_{18}) . \end{array} $

Equivalence

 $\mathcal{A}_{u}^{IRA} = A_6^T (T_{c\bar{3}})_i (H_6)_i^{[ik]} (\overline{T}_8)_k^j P_l^l$ $+B_{6}^{T}(T_{c\bar{3}})_{i}(H_{6})_{i}^{[ik]}(\overline{T}_{8})_{k}^{l}P_{l}^{j}$ $+C_{6}^{T}(T_{c\bar{3}})_{i}(H_{6})_{i}^{[ik]}(\overline{T}_{8})_{l}^{j}P_{k}^{l}$ $+E_{6}^{T}(T_{c\bar{3}})_{i}(H_{6})_{l}^{[jk]}(\overline{T}_{8})_{i}^{i}P_{k}^{l}$ $+D_{6}^{T}(T_{c\bar{3}})_{i}(H_{6})_{l}^{[jk]}(\overline{T}_{8})_{i}^{l}P_{k}^{i}$ $+A_{15}^{T}(T_{c\bar{3}})_{i}(H_{\overline{15}})_{i}^{\{ik\}}(\overline{T}_{8})_{k}^{j}P_{l}^{l}$ $+B_{15}^{T}(T_{c\bar{3}})_{i}(H_{\overline{15}})_{i}^{\{ik\}}(\overline{T}_{8})_{k}^{l}P_{l}^{j}$ $+C_{15}^{T}(T_{c\bar{3}})_{i}(H_{\overline{15}})_{i}^{\{ik\}}(\overline{T}_{8})_{l}^{j}P_{k}^{l}$ $+E_{15}^{T}(T_{c\bar{3}})_{i}(H_{\overline{15}})_{l}^{\{jk\}}(\overline{T}_{8})_{i}^{i}P_{k}^{l}$ $+D_{15}^{T}(T_{c\bar{3}})_{i}(H_{\overline{15}})_{l}^{\{ik\}}(\overline{T}_{8})_{i}^{l}P_{k}^{i}.$



 $\mathcal{M} = a_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_k^j P_l^l$ $+ b_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_k^l P_l^j$ + $c_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_l^j P_k^l$ + $d_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_l^{\{jk\}} (\overline{T_8})_i^l P_k^i$ + $e_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_l^{\{jk\}} (\overline{T_8})_i^i P_k^l$ $+ a_6 \times (T_{c\bar{3}})^{[ik]} (H_{\overline{6}})_{\{ij\}} (\overline{T_8})^j_k P_l^l$ $+ b_6 \times (T_{c\bar{3}})^{[ik]} (H_{\bar{6}})_{\{ij\}} (\overline{T_8})^l_k P^j_l$ + $c_6 \times (T_{c\bar{3}})^{[kl]} (H_{\bar{B}})_{\{ij\}} (\overline{T_8})^j_l P^l_k$ $+ d_6 \times (T_{c\bar{3}})^{[ik]} (H_{\overline{6}})_{\{ij\}} (\overline{T_8})^i_k P^j_I.$

 $q^{a'} = 0.05(44)$

 T_5

 $f_7 = 0.0155(33)$

 $f_8 = -0.015(25)$

 $f_{11} = -0.031(24)$

 T_5

 $q_7 = 0.0477(86)$

 $g_8 = -0.07(11)$

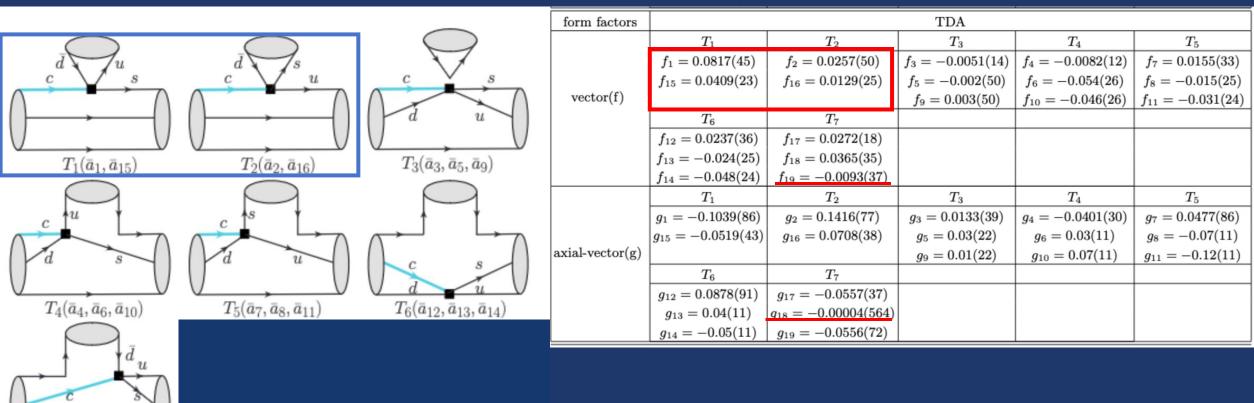
 $g_{11} = -0.12(11)$

The charmed baryon two body decays(CBTD) $\overline{a}_1 = b_6 - d_6 + e_{15}, \quad \overline{a}_2 = d_6 - b_6 + e_{15}, \quad \overline{a}_3 = -\frac{a}{2},$ $\overline{a}_4 = \frac{1}{2}(-c_6 + c_{15}), \quad \overline{a}_5 = \frac{1}{2}a', \quad \overline{a}_7 = \frac{1}{2}(c_6 + c_{15}),$ Case I (χ^2 /d.o.f=1.28) form factors $|f_6^d = -0.0093(37)|f^{a\prime} = -0.003(101)$ $f^a = 0.0101(28)$ $f_6^b = 0.0187(40)$ $f_6^c = 0.0237(36)$ $\overline{a}_6 = \frac{1}{2}(-b_6 - c_6 - e_{15} + d_{15}) + \frac{1}{4}(a + a'),$ vector(f) $f_{15}^b = -0.0100(34)$ $f_{15}^d = -0.0156(22)$ $f_{15}^c = 0.0073(34)$ $f_{15}^e = 0.0537(35)$ $g^a = -0.0266(78)$ $q_6^b = -0.1784(55)$ $q_6^c = 0.0878(91)$ $q_6^d = -0.0556(72)$ $\overline{a}_8 = \frac{1}{2}(b_6 + c_6 + d_{15} - e_{15}) - \frac{1}{4}(a + a'),$ axial-vector(g) $g_{15}^c = 0.0075(90)$ $|g_{15}^d = -0.0219(57)| g_{15}^e = 0.0189(34)$ $q_{15}^{b} = 0.0746(48)$ $\overline{a}_9 = \frac{1}{2}(a+a'), \quad \overline{a}_{12} = c_6, \quad \overline{a}_{15} = \frac{1}{2}(b_6 - d_6 + c_{15}),$ form factors TDA T_1 T_2 T_3 T_4 $\overline{a}_{10} = \frac{1}{2}(-b_6 - c_{15} + d_{15} - e_{15}) + \frac{1}{4}(a + a'),$ $f_1 = 0.0817(45)$ $f_2 = 0.0257(50)$ $f_3 = -0.0051(14)$ $f_4 = -0.0082(12)$ $f_{15} = 0.0409(23)$ $f_5 = -0.002(50)$ $f_6 = -0.054(26)$ $f_{16} = 0.0129(25)$ vector(f) $f_9 = 0.003(50)$ $f_{10} = -0.046(26)$ $\overline{a}_{11} = \frac{1}{2}(b_6 - c_{15} + d_{15} - e_{15}) - \frac{1}{4}(a + a')),$ T_7 T_6 $f_{12} = 0.0237(36)$ $f_{17} = 0.0272(18)$ $\overline{a}_{13} = \frac{1}{2}(-c_{15} + b_{15} + c_6 + d_{15}) - \frac{1}{4}(a' - a)$ $f_{13} = -0.024(25)$ $f_{18} = 0.0365(35)$ $f_{14} = -0.048(24)$ $f_{19} = -0.0093(37)$ T_1 T_3 T_4 T_2 $\overline{a}_{14} = \frac{1}{2}(-e_{15} + b_{15} - c_6 + d_{15}) - \frac{1}{4}(a' - a)$ $g_4 = -0.0401(30)$ $g_1 = -0.1039(86)$ $g_2 = 0.1416(77)$ $g_3 = 0.0133(39)$ $g_{15} = -0.0519(43)$ $g_{16} = 0.0708(38)$ $g_5 = 0.03(22)$ $g_6 = 0.03(11)$ axial-vector(g) $\overline{a}_{16} = \frac{1}{2}(-b_6 + d_6 + e_{15}), \quad \overline{a}_{17} = \frac{1}{2}(d_6 + e_{15} - b_{15}),$ $g_9 = 0.01(22)$ $g_{10} = 0.07(11)$ T_6 T_7 $g_{12} = 0.0878(91)$ $g_{17} = -0.0557(37)$ $\overline{a}_{18} = \frac{1}{2}(-d_6 + e_{15} - b_{15}), \quad \overline{a}_{19} = d_6.$ $q_{13} = 0.04(11)$ $g_{18} = -0.00004(564)$ $g_{14} = -0.05(11)$ $g_{19} = -0.0556(72)$

 $T_7(\bar{a}_{17}, \bar{a}_{18}, \bar{a}_{19})$

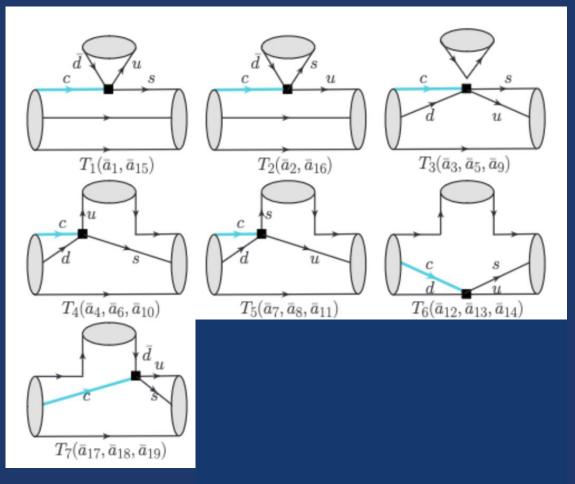
 $T_1, T_2 \sim 0.1$

The charmed baryon two body decays(CBTD)



Ko["]rner-Pati-Woo (KPW) theorem

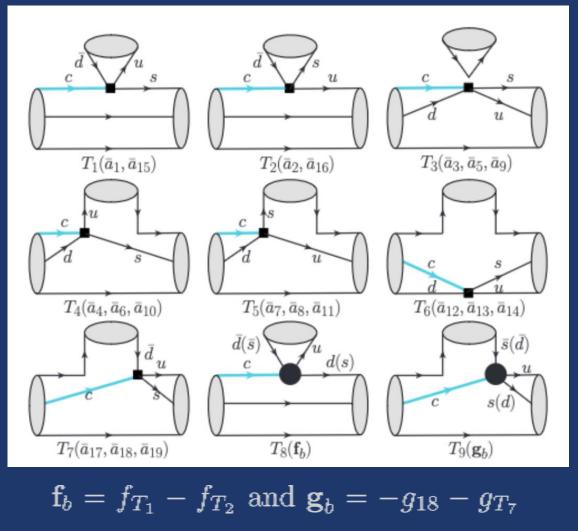
$$\begin{split} F(T_{c\overline{3}} \to \mathbf{B}P) \;\; = \;\; \tilde{f}^a(P^\dagger)^l_l \mathcal{H}(\overline{\mathbf{6}})_{ij} T^{ik}_c(\mathbf{B}^\dagger)^j_k + \tilde{f}^b \mathcal{H}(\overline{\mathbf{6}})_{ij} T^{ik}_c(\mathbf{B}^\dagger)^l_k (P^\dagger)^j_l + \tilde{f}^c \mathcal{H}(\overline{\mathbf{6}})_{ij} T^{ik}_c(P^\dagger)^l_k (\mathbf{B}^\dagger)^j_l \\ & + \tilde{f}^d \mathcal{H}(\overline{\mathbf{6}})_{ij} (\mathbf{B}^\dagger)^i_k (P^\dagger)^j_l T^{kl}_c + \tilde{f}^e (\mathbf{B}^\dagger)^j_i \mathcal{H}(\mathbf{15})^{ik}_l (P^\dagger)^l_k (T_{c\overline{3}})_j \;, \end{split}$$



$$\begin{split} A_{1,15} &= A_{T_1} = |A_{2,16}| = A_{T_2}, \quad |A_{3,5,9}| = A_{T_3}, \\ A_{4,6,10} &= A_{T_4} = |A_{7,8,11}| = A_{T_5}, \\ A_{12,13,14} &= A_{T_6}, \quad |A_{17,18,19}| = A_{T_7}, \ A = f, g. \end{split}$$

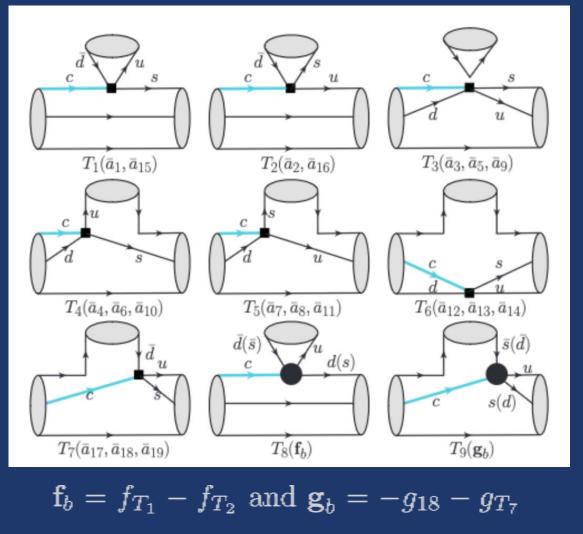
Global analysis of CBTD in IRA

The charmed baryon two body decays(CBTD)

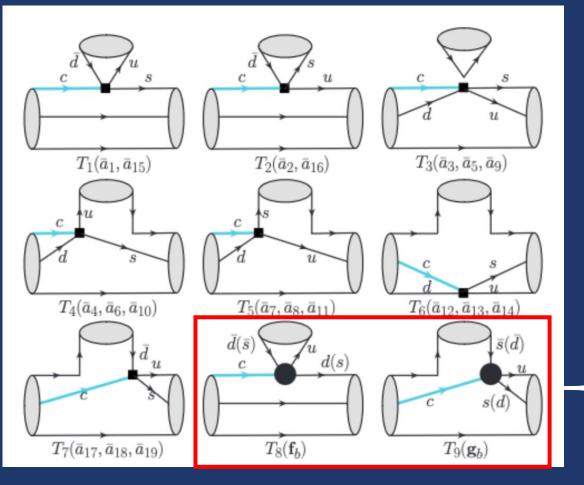


$$\begin{split} A_{1,15} &= A_{T_1} = |A_{2,16}| = A_{T_2}, \quad |A_{3,5,9}| = A_{T_3}, \\ A_{4,6,10} &= A_{T_4} = |A_{7,8,11}| = A_{T_5}, \\ A_{12,13,14} &= A_{T_6}, \quad |A_{17,18,19}| = A_{T_7}, \ A = f, g. \end{split}$$

$$\begin{aligned} f^{a} &= -\frac{f_{T_{6}}}{2}, \quad f^{a'} = \frac{1}{2}f_{T_{6}} - f_{T_{3}}, \quad f^{b}_{6} = \frac{3}{2}\mathbf{f}_{b}, \\ f^{b}_{15} &= -f_{T_{6}} - f_{T_{7}}, \quad f^{c}_{6} = f_{T_{6}} + f_{T_{4}}, \quad f^{c}_{15} = f_{T_{4}}, \\ f^{d}_{6} &= -\frac{3}{2}\mathbf{f}_{b} - f_{T_{7}}, \quad f^{d}_{15} = -2f_{T_{4}} - f_{T_{6}}, \\ f^{e}_{15} &= -\frac{3}{2}\mathbf{f}_{b} + 3f_{T_{1}} + 2f_{T_{4}} + f_{T_{6}} + f_{T_{7}}, \\ g^{a} &= g_{T_{4}} + \frac{g_{T_{8}}}{2}, \quad g^{a'} = g_{T_{4}} + g_{T_{3}} - \frac{g_{T_{6}}}{2}, \quad g^{c}_{15} = 0 \\ g^{b}_{6} &= -3g_{T_{1}} - 2g_{T_{4}}, \quad g^{b}_{15} = -g^{e}_{15} = \frac{\mathbf{g}_{b}}{2} + g_{T_{8}} + g_{T_{7}}, \\ g^{c}_{6} &= g_{T_{6}}, \quad g^{d}_{6} = 3g_{T_{1}} - g_{T_{7}} + \frac{\mathbf{g}_{b}}{2}, \quad g^{d}_{15} = g_{T_{6}}, \end{aligned}$$



 $|A_{1,15}| = A_{T_1} = |A_{2,16}| = A_{T_2}, |A_{3,5,9}| = A_{T_3},$ $|A_{4,6,10}| = A_{T_4} = |A_{7,8,11}| = A_{T_5}$ $|A_{12,13,14}| = A_{T_6}, \quad |A_{17,18,19}| = A_{T_7}, \ A = f, g.$ $f_6^b = 0.0187 \pm 0.0040 - g_{15}^c = 0.0075 \pm 0.0090$ $f^a=-rac{f_{T_6}}{2}, \quad f^{a\prime}=rac{1}{2}f_{T_6}-f_{T_3}, \quad f^b_6=rac{3}{2}{f f}_b,$ $f_{15}^b = -f_{T_b} - f_{T_7}, \quad f_6^c = f_{T_6} + f_{T_4}, \quad f_{15}^c = f_{T_4},$ $f_6^d = -\frac{3}{2}\mathbf{f}_b - f_{T_7}, \quad f_{15}^d = -2f_{T_4} - f_{T_8},$ $f_{15}^{e} = -\frac{3}{9}\mathbf{f}_{b} + 3f_{T_{1}} + 2f_{T_{4}} + f_{T_{5}} + f_{T_{7}},$ $g^a = g_{T_4} + rac{g_{T_8}}{2}, \quad g^{a\prime} = g_{T_4} + g_{T_3} - rac{g_{T_6}}{2}, \; g^c_{15} = 0$ $g_6^b = -3g_{T_1} - 2g_{T_4}, \quad g_{15}^b = -g_{15}^e = rac{{f g}_b}{2} + g_{T_6} + g_{T_7},$ $g_6^c = g_{T_6}, \quad g_6^d = 3g_{T_1} - g_{T_7} + rac{{f g}_b}{2}, \quad g_{15}^d = g_{T_6},$



Symmetry breaking

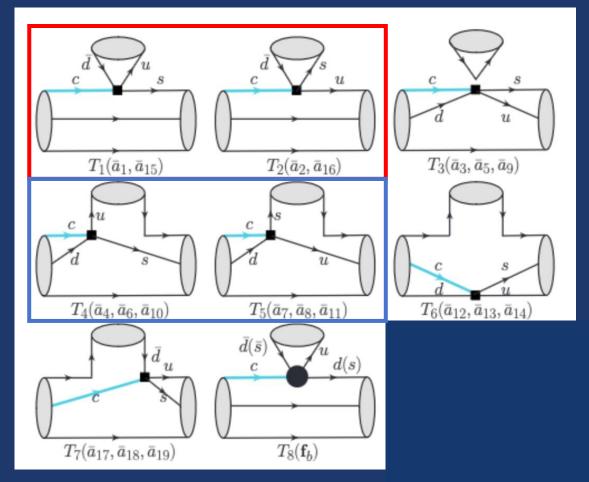
Penguin

$$O_{3,5} = (\bar{u}_{\alpha}c_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\beta}q_{\beta})_{V\mp A},$$

$$O_{4,6} = (\bar{u}_{\beta}c_{\alpha})_{V-A} \sum_{q=u,d,s} (\bar{q}_{\alpha}q_{\beta})_{V\mp A},$$
Hew physics

$$C \longrightarrow U \overline{Q} Q$$

New weak phase



Add strong phase corresponding to TDA diagram **18+11-1=28 parameters**

$$\begin{aligned} A_{6,15}^{q} &= e^{i\phi_{1}} \left(\mathcal{R}e(A_{6,15}^{q}) + \mathcal{I}m(A_{6,15}^{q}) \right) = |A_{i}^{q}|e^{i\phi_{1}}e^{i\delta_{i}^{q}}, \\ f_{6}^{b} &= e^{i\phi} \left(\mathcal{R}e(f_{6}^{b}) + \frac{3}{2}\mathcal{I}m(\mathbf{f}_{b}) \right) = |f_{6}^{b}|e^{i\phi}e^{i\delta_{6}^{b}}, \\ f_{6}^{d} &= e^{i\phi_{1}} \left(\mathcal{R}e(f_{6}^{d}) + \mathcal{I}m(f_{6}^{d}) + \mathcal{R}e(f_{6}^{b}) \right) \\ &- e^{i\phi} \left(\mathcal{R}e(f_{6}^{b}) + \frac{3}{2}\mathcal{I}m(\mathbf{f}_{b}) \right), \\ f_{15}^{e} &= e^{i\phi_{1}} \left(\mathcal{R}e(f_{15}^{e}) + \mathcal{I}m(f_{15}^{e}) + \mathcal{R}e(f_{6}^{b}) \right) \\ &- e^{i\phi} \left(\mathcal{R}e(f_{6}^{b}) + \frac{3}{2}\mathcal{I}m(\mathbf{f}_{b}) \right), A = f, g, \end{aligned}$$
(6)

$$\begin{aligned} A_{6,15}^{q} &= e^{i\phi_{1}} \left(\mathcal{R}e(A_{6,15}^{q}) + \mathcal{I}m(A_{6,15}^{q}) \right) = |A_{i}^{q}|e^{i\phi_{1}}e^{i\delta_{i}^{q}}, \\ f_{6}^{b} &= e^{i\phi} \left(\mathcal{R}e(f_{6}^{b}) + \frac{3}{2}\mathcal{I}m(\mathbf{f}_{b}) \right) = |f_{6}^{b}|e^{i\phi}e^{i\delta_{6}^{b}}, \\ f_{6}^{d} &= e^{i\phi_{1}} \left(\mathcal{R}e(f_{6}^{d}) + \mathcal{I}m(f_{6}^{d}) + \mathcal{R}e(f_{6}^{b}) \right) \\ &- e^{i\phi} \left(\mathcal{R}e(f_{6}^{b}) + \frac{3}{2}\mathcal{I}m(\mathbf{f}_{b}) \right), \\ f_{15}^{e} &= e^{i\phi_{1}} \left(\mathcal{R}e(f_{15}^{e}) + \mathcal{I}m(f_{15}^{e}) + \mathcal{R}e(f_{6}^{b}) \right) \\ &- e^{i\phi} \left(\mathcal{R}e(f_{6}^{b}) + \frac{3}{2}\mathcal{I}m(\mathbf{f}_{b}) \right), A = f, g, \end{aligned}$$

Generally, new weak phase can not be determined without the antibaryon decay data.

- In SU(3) symmetry, strong phase is global phase.
- New weak phase only entry the Cabibbo-suppressed processess.

Determine the strong phase by Cabibbo-allowed and doublely Cabibbo-supressed processes

Determine the weak phase by Cabibbo-supressed processes If there is not necessary to add the new weak phase, the fit result of new weak phase should equal to zero with its error.

form factors	Case II (χ^2 /d.o.f=0.597)				
	real part			imaginary part	
	$f^a = -0.0368(84)$	$f_6^b = 0.0075(49)$	$f_6^c = 0.017(13)$	$f_{T_1} = -0.0119(35)$	$f_{T_4} = 0.0080(92)$
vector(f)	$f_6^d = 0.006(27)$	$f^{a\prime} = -0.008(332)$	$\mathbf{f}_b = -0.0013(58)$	$f_{T_6} = -0.018(14)$	$f_{T_7} = 0.014(13)$
	$f_{15}^b = 0.0201(71)$	$f_{15}^c = -0.0055(65)$	$f_{15}^d = -0.018(20)$		
	$f_{15}^e = -0.0130(61)$				
	$g^a = -0.022(38)$	$g_6^b = 0.035(15)$	$g_6^c = -0.036(21)$	$g_{T_1} = -0.024(51)$	$g_{T_3} = -0.18(60)$
axial-vector(g)	$g_6^d = 0.03(10)$	$g^{a\prime} = 0.13(38)$		$g_{T_4} = 0.11(12)$	$g_{T_6} = 0.018(52)$
	$g_{15}^b = -0.197(24)$	$g_{15}^c = -0.024(65)$	$g_{15}^d = -0.015(74)$	$g_{T_7} = 0.02(10)$	weak phase
	$g_{15}^e = -0.005(55)$				$\phi = -1.16(85)$

Using all 35 experimental data

Penguin weak phase:
$$\delta_p = -1.147 \pm 0.026$$

Determine the strong phase by Cabibbo-allowed and doublely Cabibbo-supressed processes

Determine the weak phase by Cabibbo-supressed processes If there is not necessary to add the new weak phase, the fit result of new weak phase should equal to zero with its error.

$$\begin{array}{l} \text{The CPV in CBTD} \\ \mathcal{H}_{eff} &= \underbrace{\frac{G_F}{\sqrt{2}} \left(\sum\limits_{i=1,2} C_i \lambda O_i - \sum\limits_{j=3}^6 C_j \lambda_b O_j \right) + h.c., \\ & & & \\ & & \\ \text{Different strong phase and weak phase} \\ \\ A_{CP} &= \underbrace{\frac{Br(B_c \rightarrow BP) - Br(\bar{B}_c \rightarrow \bar{B}\bar{P})}{Br(B_c \rightarrow BP) + Br(\bar{B}_c \rightarrow \bar{B}\bar{P})} \propto \sin(\phi_1 - \phi_2) \sin(\delta_1 - \delta_2) \\ \\ V_{cb}^* V_{ub} \sim O(10^{-4}) \longrightarrow A_{CP} \sim O(10^{-4}) \\ \\ \text{Our work} \quad \mathbf{f}_b \sim O\left(10^{-3}\right) \longrightarrow A_{CP} \sim O(10^{-3}) \end{array}$$

The strong phase of each diagram and possible the CPV

$$\begin{aligned} & \text{The CPV in CBTD} \\ \mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \Big(\sum_{i=1,2} C_i \lambda O_i - \sum_{j=3}^6 C_j \lambda_b O_j \Big) + h.c., \\ & \text{Our work} \quad \mathbf{f}_b \sim O(10^{-3}) \quad \Longrightarrow \quad A_{CP} \sim O(10^{-3}) \end{aligned}$$

Prediction

$$A_{CP}^{\Lambda_c^+ \to p\eta} = -0.047(45), A_{CP}^{\Lambda_c^+ \to n\pi^+} = -0.33(28), A_{CP}^{\Xi_c^+ \to \Xi^0 K^+} = -0.39(32)$$

$$\sim 0.001 \qquad \sim 0.01$$

We need more data to reduce the error

Conclusion

- An global analysis of CBTD in IRA are given within chi²/d.o.f=1.28.
- The equivalence of TDA and IRA shows T1 T2 diagram are dominant.
- By considering the differentence of IRA and TDA in numerical analysis, we add a new weak phase in our work.
- By determineing the weak phase in global analysis phi=-1.16(85), we observe that the fit vaule aligns with expectations for the QCD penguin's weak phase.

The penguin contribution in CBTD

decompositions in IRA

 $\begin{aligned} H_{k}^{ij} &= \frac{1}{2} (H_{15})_{k}^{ij} - \frac{1}{2} (H_{\bar{6}})_{k}^{ij} - \frac{1}{8} (H_{3})_{k}^{ij} + \frac{3}{8} (H_{3\prime})_{k}^{ij} \\ (H_{15})_{k}^{ij} &= -\frac{1}{4} (H_{m}^{im} \delta_{k}^{j} + H_{m}^{jm} \delta_{k}^{i} + H_{m}^{mi} \delta_{k}^{j} + H_{m}^{mj} \delta_{k}^{i}) \\ &\quad + H_{k}^{ij} + H_{k}^{ji}, \\ (H_{\bar{6}})_{k}^{ij} &= \frac{1}{2} (H_{m}^{im} \delta_{k}^{j} - H_{m}^{jm} \delta_{k}^{i} - H_{m}^{mi} \delta_{k}^{j} + H_{m}^{mj} \delta_{k}^{i}) \\ &\quad - H_{k}^{ij} + H_{k}^{ji}, \\ (H_{3})_{k}^{ij} &= H_{m}^{mi} \delta_{k}^{j} + H_{m}^{jm} \delta_{k}^{i}, \\ (H_{3\prime})_{k}^{ij} &= H_{m}^{im} \delta_{k}^{j} + H_{m}^{mj} \delta_{k}^{i}. \end{aligned}$

operator in Eq. 2. For the $c \to s\bar{d}u$ operator, the IRA Hamiltonian are

$$(H_{\bar{6}})_2^{31} = -(H_{\bar{6}})_2^{13} = (H_{15})_2^{31} = (H_{15})_2^{13} = V_{cs}^* V_{ud}, \quad (5)$$

while, for doubly Cabibbo-surpressed induced by the $c \to d\bar{s} u$ transition, we have

$$(H_{\bar{6}})_3^{21} = -(H_{\bar{6}})_3^{12} = (H_{15})_3^{21} = (H_{15})_3^{12} = V_{cd}^* V_{us}.$$
 (6)

For the transition $c \to u\bar{d}d$, we have

$$(H_3)^1 = \lambda_d, \quad (H_{\bar{6}})_2^{21} = -(H_{\bar{6}})_2^{12}$$

= $(H_{\bar{6}})_3^{13} = -(H_{\bar{6}})_3^{31} = \frac{1}{2}\lambda_d, \frac{1}{3}(H_{15})_2^{21} = \frac{1}{3}(H_{15})_2^{12}$
= $-\frac{1}{2}(H_{15})_1^{11} = -(H_{15})_3^{13} = -(H_{15})_3^{31} = \frac{1}{4}\lambda_d, \quad (7)$

where $\lambda_d = V_{cd}^* V_{ud}$ and $(H_3)^i = (H_3)_k^{ji} \delta_j^k$. Meanwhile, for the transition $c \to u\bar{s}s$, we have

$$(H_3)^1 = \lambda_s, \quad (H_{\bar{6}})_2^{12} = -(H_{\bar{6}})_2^{21} = (H_{\bar{6}})_3^{31} = -(H_{\bar{6}})_3^{13} = \frac{1}{2}\lambda_s, \frac{1}{3}(H_{15})_3^{31} = \frac{1}{3}(H_{15})_3^{13} = -\frac{1}{2}(H_{15})_1^{11} = -(H_{15})_2^{12} = -(H_{15})_2^{21} = \frac{1}{4}\lambda_s, \quad (8)$$

where $\lambda_s = V_{cs}^* V_{us}$. Combining all Hamiltonian matrix

The penguin contribution in CBTD

by $\lambda_b + \lambda_d + \lambda_s = 0$. For clearly showing the source, we give the Hamiltonian matrix of $c \to u d\bar{d}/s\bar{s}$ as

$$(H_{\bar{6}})_{3}^{31} = -(H_{\bar{6}})_{3}^{13} = (H_{\bar{6}})_{2}^{12} = -(H_{\bar{6}})_{2}^{21} = \frac{1}{2}(\lambda_{s} - \lambda_{d}),$$

$$(H_{15})_{3}^{31} = (H_{15})_{3}^{13} = \frac{3}{4}\lambda_{s} - \frac{1}{4}\lambda_{d} = \frac{\lambda_{s} - \lambda_{d}}{2} - \frac{\lambda_{b}}{4},$$

$$(H_{15})_{2}^{21} = (H_{15})_{2}^{12} = \frac{3}{4}\lambda_{d} - \frac{1}{4}\lambda_{s} = \frac{\lambda_{d} - \lambda_{s}}{2} - \frac{\lambda_{b}}{4},$$

$$(H_{15})_{1}^{11} = \frac{\lambda_{b}}{2}, (H_{3})^{1} = -\lambda_{b}.$$
(9)

One can see that the $(H_{15})_1^{11}$ and $(H_3)^1$ are proportional to λ_b and it will introduce a new weak phase. It violate traditional understanding of the weak decays. One can easily find that when we consider the $c \rightarrow u d\bar{d}$ or $c \rightarrow u s\bar{s}$ process separately, the new CKM matrix will not involve.

We find that the Hamiltonian which are proportional to λ_b come form the trace of H_k^{ij} . However in the decomposition relation of IRA Hamiltonian Eq. 4, the H_{15} and $H_{\bar{6}}$ are traceless and the trace are absorbed into H_3 . As a result, since the weak interaction Hamiltonian obey the symmetry of three generate quarks $\{\{u, d\}, \{c, s\}, \{t, b\}\}$ instead of $\{u, d, s\}$ symmetry, the traceless of H_{15} is breaking. If we use the H_1^{11} to represent the $c \to ubb$ transition, the $(H_3)^1 = \lambda_d + \lambda_s + \lambda_b = 0$ and λ_b are canceled in each element of H_{15} . In summary, the λ_b is IRA Hamiltonian come from the $\{u, d, s\}$ symmetry breaking in the weak interaction. Fortunately, this symmetry breaking of Hamiltonian will only determine the possible decay channel and the ratio of amplitude will not be affected. Therefore we can just omit the λ_b in IRA Hamiltonian of Eq. 9 and the non-physical results will disappeared.

The penguin contribution in CBTD

 $\mathcal{M}^{IRA} = a_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_j^{\{ik\}} (\overline{T_8})_k^j P_l^l$

+ $b_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_k^l P_l^j$ + $c_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_i^{\{ik\}} (\overline{T_8})_l^j P_k^l$ + $d_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_l^{\{jk\}} (\overline{T_8})_i^l P_k^i$ + $e_{15} \times (T_{c\bar{3}})_i (H_{\overline{15}})_l^{\{jk\}} (\overline{T_8})_i^i P_k^l$ + $a_6 \times (T_{c\bar{3}})^{[ik]} (H_{\overline{6}})_{\{ij\}} (\overline{T_8})^j_{\mu} P^l_l$ + $b_6 \times (T_{c\bar{3}})^{[ik]} (H_{\overline{6}})_{\{ij\}} (\overline{T_8})^l_k P^j_l$ + $c_6 \times (T_{c\bar{3}})^{[ik]} (H_{\bar{6}})_{\{ij\}} (\overline{T_8})^j_l P^l_k$ + $d_6 \times (T_{c\bar{3}})^{[lk]} (H_{\bar{6}})_{\{ij\}} (\overline{T_8})^i_k P^j_l$. + $a_3 \times (T_{c\overline{3}})_i (H_{\overline{3}})^k (\overline{T_8})^i_l P^l_k.$ + $b_3 \times (T_{c\overline{3}})_i (H_{\overline{3}})^k (\overline{T_8})^i_k P^l_l$. + $c_3 \times (T_{c\overline{3}})_i (H_{\overline{3}})^i (\overline{T_8})_l^k P_k^l$. $+ d_3 \times (T_{c\bar{3}})_i (H_{\overline{3}})^l (\overline{T_8})^k_l P^i_k.$

form factors	Case I (χ^2 /d.o.f=0.945)					
	$f^a = -0.0615(34)$	$f_6^b = 0.0592(32)$	$f_6^c = 0.0186(49)$	$f_6^d = 0.0064(36)$		
vector(f)	$f^{a\prime} = -0.016(13)$	$f_{15}^b = -0.0089(17)$	$f_{15}^c = -0.0213(23)$	$f_{15}^d = -0.0056(44)$	$f_{15}^e = -0.0250(27)$	
	$f_3^a = 0.0058(10)$	$f_3^b = -0.0270(24)$	$f_3^c = -6 * 10^{-20} (10^{-11})$	$f_3^d = 0.03076(91)$		
	$g^a = 0.126(10)$	$g_6^b = -0.186(14)$	$g_6^c = -0.0437(61)$	$g_6^d = 0.037(12)$		
axial-vector(g)	$g^{a\prime} = 0.160(32)$	$g_{15}^b = 0.056(11)$	$g_{15}^c = -0.043(18)$	$g_{15}^d = 0.006(16)$	$g_{15}^e = -0.104(12)$	
	$g_3^a = 0.0215(28)$	$g_3^b = 0.0210(94)$	$g_3^c = 10^{-18} (10^{-10})$	$g_3^d = -0.0818(52)$		

 $\lambda_b \times F_P \sim 0.01$