Spectroscopy and decays of singly charmed baryons

报告人: 罗肆强

兰州大学

2024年7月7日-7月11日

2024年超级陶粲装置研讨会

- 1. Background
- 2. Formalism
- 3. Spectroscopy and decays of singly charmed baryons
- 4. Summary

1. Background

Singly Charmed Baryons

	Λ_c/Σ_c				
	BNL PRL 34 1125	Fermilab PRL 37 882	SKAT IETPL 58 247	ARGUS PLB 317 227	CLEO PRI, 74, 3331
	$\Sigma_c(2455)$	$\Lambda_c(2286)$	$\Sigma_c(2520)$	$\Lambda_c(2625)$	$\Lambda_c(2595)$
	1975	1976	19	993	1995
	CLEO PRL 86, 4479 $\Lambda_c(2880)$ $\Lambda_c(2765)$	Belle PRL 94, 122002 $\Sigma_c(2800)$	BaBar PRL 98, 012001 Belle PRL 98, 262001 $\Lambda_c(2940)$	LHCb JHEP 05, 030 $\Lambda_c(2860)$	Belle PRL 130, 031901 $\Lambda_c(2910)$
	2000	2004	2006	2017	2022
	$\Xi_c^{(\prime)}$				
	$\begin{array}{c} \text{CERN} \\ \text{PLB 122, 455} \\ \Xi_c(2470) \end{array}$	CLEO PRL 75, 4364 $\Xi_c(2645)$	CLEO PRL 82, 492 $\Xi'_{c}(2570)$	CLEO PRL 83, 3390 $\Xi_c(2815)$	CLEO PRL 86, 4243 $\Xi_c(2790)$
	1983	1995	1998	1999	2000
Pl	Belle RL 97, 162001 $\mathbf{E}_{c}(3080)$ PRD $\Xi_{c}(2970)$ $\Xi_{c}(2970)$	BaBa BaBar PRD 77, 0 77, 031101 $\Xi_c(312)$ (2930) $\Xi_c(30)$	r 12002 Belle EPJC 78, 25: 23) EPJC 78, 92: 55) $\Xi_{\rm c}(2930)$	LHCb PRL 124, 222 $\Xi_c(2965)$ $\Xi_c(2939)$ $\Xi_c(2932)$	001) LHCb) PRD 108, 01202) E(2880)
			2010		
	2006	2007	2018	2020	2022
	Ω_c		LHCt PRL 118, 1	82001	LHCb
	WA62 ZPC 28, 175 $\Omega_c(2700)$	BaBar PRL 97, 232001 $\Omega_c(2770)$	$\Omega_c(3050)$ $\Omega_c(3050)$ $\Omega_c(3000)$	$\Omega_c(3119)$ $\Omega_c(3090)$	$\Omega_c(3185)$ $\Omega_c(3327)$
	1985	2006	2017	7	2023 Year

 In the past about fifty years, over 30 singly charmed baryons were observed.

2. Over half of the number were observed in this centry.

Observed Singly Charmed Baryons in Experiments.

In SU(3) flavor symmetry, the flavor wave functions could be decomposed as

$$3_f \otimes 3_f = \bar{3}_f \oplus 6_f$$

2. Formalism

Spectroscopy: Three-body

$$\begin{split} H &= \sum_{i=1}^{3} \frac{p_i^2}{2m_i} + \sum_{i < j} V_{ij}(\mathbf{r}) \\ V_{ij} &= H_{ij}^{\text{conf}} + H_{ij}^{\text{hyp}} + H_{ij}^{\text{so}(\text{cm})} + H_{ij}^{\text{so}(\text{tp})} \\ H_{ij}^{\text{conf}} &= -\frac{2\alpha_s}{3r_{ij}} + \frac{b}{2}r_{ij} + \frac{1}{2}C \\ H_{ij}^{\text{hyp}} &= \frac{2\alpha_s}{3m_im_j} \left[\frac{8\pi}{3} \tilde{\delta}(r_{ij})\mathbf{s}_i \cdot \mathbf{s}_j + \frac{1}{r_{ij}^3} S(\mathbf{r}, \mathbf{s}_i, \mathbf{s}_j) \right] \\ H_{ij}^{\text{so}(\text{cm})} &= \frac{2\alpha_s}{3r_{ij}^3} \left(\frac{\mathbf{r}_{ij} \times \mathbf{p}_i \cdot \mathbf{s}_i}{m_i^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_j}{m_j^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_i - \mathbf{r}_{ij} \times \mathbf{p}_i \cdot \mathbf{s}_j}{m_i m_j} \right] \\ H_{ij}^{\text{so}(\text{tp})} &= -\frac{1}{2r_{ij}} \frac{\partial H_{ij}^{\text{conf}}}{\partial r_{ij}} \left(\frac{\mathbf{r}_{ij} \times \mathbf{p}_i \cdot \mathbf{s}_i}{m_i^2} - \frac{\mathbf{r}_{ij} \times \mathbf{p}_j \cdot \mathbf{s}_j}{m_j^2} \right) . \\ \tilde{\delta}(r) &= \frac{\sigma^3}{\pi^{3/2}} e^{-\sigma^2 r^2} \quad S(\mathbf{r}, \mathbf{s}_i, \mathbf{s}_j) = \frac{3\mathbf{s}_i \cdot \mathbf{r}_{ij}\mathbf{s}_j \cdot \mathbf{r}_{ij}}{r_{ij}^2} - \mathbf{s}_i \cdot \mathbf{s}_j \end{split}$$

Spectroscopy: Coupled-channel effects

In coupled channel effects, the bare state could couple with intermediate channel. Then the physical wave function should be written as

 $|\psi\rangle = c_0 |\psi_A\rangle + c_{BC}(\mathbf{p}) |\psi_{BC}(\mathbf{p})\rangle,$

where $|\psi_A\rangle$ is bare state, $|\psi_{BC}(\mathbf{p})\rangle$ intermediate channel, c_0 and $c_{BC}(\mathbf{p})$ are amplitudes of bare state and intermediate channel, respectively. Then the Hamilton should be rewritten as

$$\hat{H} = \hat{H}_0 + \hat{H}_I + \hat{H}_{BC},$$

where \hat{H}_0 is the Hamilton of the bare state, \hat{H}_{BC} is the Hamilton of the intermediate channel, \hat{H}_I is the transition Hamilton between bare state and intermediate channel.

Coupled channel equation:

Mass Shift

$$M_0 + \int \frac{|H_{A \to BC}(\mathbf{p})|^2}{M - E_{BC}(p)} \mathrm{d}^3 \mathbf{p} = M.$$

Mass shift:

$$\Delta M(M) = \int \frac{|H_{A \to BC}(\mathbf{p})|^2}{M - E_{BC}(p)} d^3 \mathbf{p}$$

1. M_0 : bare mass, calculated by conventional quark model

2. *M*: physical mass

3. $H_{A \to BC}(\mathbf{p})$: transition matrix element

Decay: QPC model

QPC (quark-pair-creation) model, also called ${}^{3}P_{0}$ model, which transition operator is

$$\hat{\mathcal{T}} = -3\gamma \sum_{m} \langle 1, m; 1, -m | 0, 0 \rangle \int d^{3}\mathbf{p}_{i} d^{3}\mathbf{p}_{j} \delta(\mathbf{p}_{i} + \mathbf{p}_{j}) \\ \times \mathcal{Y}_{1}^{m} \left(\frac{\mathbf{p}_{i} - \mathbf{p}_{j}}{2}\right) \omega_{0}^{(i,j)} \phi_{0}^{(i,j)} \chi_{1,-m}^{(i,j)} b_{i}^{\dagger}(\mathbf{p}_{i}) d_{j}^{\dagger}(\mathbf{p}_{j}).$$
(Satisfy ³*P*₀ quantum number)

The amplitude of the partial wave is

$$M_{A\to BC}^{SL}(p) = \langle BC, S, L, p | \hat{\mathcal{T}} | A \rangle,$$

S is the relative spin of the final BC, L is the relative orbital angular momentum of BC, P is the momentum of B or C in the center-of-mass of A. The width is calculated by:

$$\Gamma_{A \to BC}^{SL} = 2\pi \frac{E_B(p)E_c(p)}{M_A} p |M_{A \to BC}^{SL}(p)|^2$$

Radiative decay

At the tree level, the Hamiltonian of the coupling of quarks and photon is

$$H_e = -\sum_j e_j \bar{\psi}_j \gamma^j_\mu A^\mu(\boldsymbol{k}, \boldsymbol{r}) \psi_j,$$

In the non-relativistic scheme, the Hamiltonian of the coupling of quarks and photon is given by

$$h_e \simeq \sum_j \left[e_j \boldsymbol{r}_j \cdot \boldsymbol{\epsilon} - \frac{e_j}{2m_j} \boldsymbol{\sigma}_j \cdot (\boldsymbol{\epsilon} \times \hat{\boldsymbol{k}}) \right] e^{-i\boldsymbol{k} \cdot \boldsymbol{r}_j}$$

With the above Hamiltonian, the radiative de-

cay amplitude is expressed as

$$\mathcal{A} = -i \sqrt{\frac{\omega_{\gamma}}{2}} \langle f | h_e | i \rangle,$$

where $|i\rangle$ and $|f\rangle$ are the wave functions of the initial and final baryons, respectively. The ω_{γ} is the energy of photon. Finally, the general expression of the radiative decay width of single-charm baryon is

$$\Gamma = \frac{|k|^2}{\pi} \frac{2}{2J_i + 1} \frac{M_f}{M_i} \sum_{J_{fz}, J_{iz}} |\mathcal{A}_{J_{fz}, J_{iz}}|^2.$$

Numerical method: GEM

Three-body Schrödinger equation:

$$\left(\sum_{i=1}^{3} \frac{p_i^2}{2m_i} + \sum_{i < j} V_{ij}(\mathbf{r})\right) |\Psi_{JM}\rangle = E |\Psi_{JM}\rangle$$

the wave function $\Psi_{JM}(\rho, \lambda)$ is expanded as

$$\Psi_{JM}(\boldsymbol{\rho},\boldsymbol{\lambda}) = \sum_{n_{\rho},n_{\lambda}} C_{n_{\rho}n_{\lambda}} \phi^{\text{color}} \phi^{\text{flavor}}$$

 $\times [[[s_{q_1}s_{q_2}]_{s_\ell}[\phi_{n_\rho l_\rho}(\rho)\phi_{n_\lambda l_\lambda}(\lambda)]_L]_{j_\ell}]_{JM}$ $C_{n_\rho n_\lambda}$ is calculated by Rayleigh-Ritz variational method:

$$\phi_{n_{\rho}l_{\rho}m_{\rho}}(\boldsymbol{\rho}) = N_{n_{\rho}l_{\rho}}\rho^{l_{\rho}}e^{-\nu_{n_{\rho}}^{\rho}\rho^{2}}Y_{l_{\rho}m_{\rho}}(\hat{\boldsymbol{\rho}})$$

$$\phi_{n_{\lambda}l_{\lambda}m_{\lambda}}(\boldsymbol{\lambda}) = N_{n_{\lambda}l_{\lambda}}\lambda^{l_{\lambda}}e^{-\nu_{n_{\lambda}}^{\lambda}\lambda^{2}}Y_{l_{\lambda}m_{\lambda}}(\hat{\boldsymbol{\lambda}})$$

Jacobi-coordinate of the singly charmed baryons.

Gaussian parameters:

$$v_{n_{\rho}} = \frac{1}{\rho_{n_{\rho}}^{2}}, \ \rho_{n_{\rho}} = \rho_{1}a^{n_{\rho}-1} \ (n_{\rho} = 1 - n_{\max}^{\rho})$$
$$v_{n_{\lambda}} = \frac{1}{\lambda_{n_{\lambda}}^{2}}, \ \lambda_{n_{\lambda}} = \lambda_{1}b^{n_{\lambda}-1} \ (n_{\lambda} = 1 - n_{\max}^{\lambda})$$

3. Spectroscopy and decays of singly charmed baryons

1S states

$\overline{\bar{3}_f}$	6	f
$\overline{\Lambda_c(2286)}$	$\Sigma_{c}(2455)$	$\Sigma_{c}^{*}(2520)$
$\Xi_c(2470)$	$\Xi_{c}^{\prime}(2580)$	$\Xi_{c}^{*}(2460)$
	$\Omega_c(2695)$	$\Omega_c^*(2765)$

P-2*S* candinates

	$\bar{3}_f$		6_f
$ 1P,\frac{1}{2}^-\rangle$	$ 1P,\frac{3}{2}^{-}\rangle$	$ 2S,\frac{1}{2}^+\rangle$	$1P \sim 2S$
$\overline{\Lambda_c(2595)}$	$\Lambda_c(2625)$	$\Lambda_c(2765)$	$\Sigma_c(2800)$
$\Xi_{c}(2790)$	$\Xi_{c}(2815)$	$\Xi_{c}(2970)$	$\Xi_c(2880) \Xi_c(2923) \Xi_c(2939) \Xi_c(2965)$
			$Ω_c(3000) Ω_c(3050) Ω_c(3065) Ω_c(3090) Ω_c(3119) Ω_c(3188)$

D-wave candinates

 $Λ_c(1D): Λ_c(2860) Λ_c(2880)$ $Ξ_c(1D): Ξ_c(3055) Λ_c(3080)$ $Ω_c(1D): Ω_c(3327)$

In 2023, the LHCb Collaboration [1] observed a new state $\Omega_c(3327)$ in $\Xi_c K$ channel, which mass and width are

$$M_{\Omega_c(3327)} = 3327.1 \pm 1.2^{+0.1}_{-1.3} \pm 0.2 \text{ MeV},$$

$$\Gamma_{\Omega_c(3327)} = 20 \pm 5^{+13}_{-1} \text{ MeV}.$$

[1] [LHCb] Phys. Rev. Lett. 131, 131902 (2023)

Specstroscopy:

Exp.

$\Omega_c(3327)$ is a good *D*-wave Ω_c candidate 14

 $20 \pm 5^{+13}_{-1}$ [1]

Predictions of 1F singly charmed baryons

Present

- \checkmark Complete 1*S* states
- \checkmark Many 1*P*-2*S* candinates
- \checkmark Several 1*D*, 2*P* candinates
 - ? There are no 1F candidates

- The methods have been tested in 1*S*, 1*P*, 1*D*, and 2*S*.
- 1*F* is higher wave, our model is not tested in 1*F*.

Spectroscopy:

Symmetry	States	J	s_ℓ	$l_ ho$	l_{λ}	L	j_ℓ
2	$\Lambda_c/\Xi_c(nF,5/2^-)$	$\frac{5}{2}$	0	0	3	3	3
\mathcal{S}_f	$\Lambda_c/\Xi_c(nF,7/2^-)$	$\frac{7}{2}$	0	0	3	3	3
	$\Sigma_{c2}/\Xi_{c2}'/\Omega_{c2}(nF, 3/2^{-})$	$\frac{3}{2}$	1	0	3	3	2
	$\Sigma_{c2}/\Xi_{c2}'/\Omega_{c2}(nF,5/2^{-})$	$\frac{5}{2}$	1	0	3	3	2
6.	$\Sigma_{c3}/\Xi_{c3}'/\Omega_{c3}(nF, 5/2^{-})$	$\frac{5}{2}$	1	0	3	3	3
0_{f}	$\Sigma_{c3}/\Xi_{c3}'/\Omega_{c3}(nF,7/2^{-})$	$\frac{7}{2}$	1	0	3	3	3
	$\Sigma_{c4}/\Xi_{c4}'/\Omega_{c4}(nF,7/2^-)$	$\frac{7}{2}$	1	0	3	3	4
	$\Sigma_{c4}/\Xi_{c4}'/\Omega_{c4}(nF, 9/2^{-})$	$\frac{9}{2}$	1	0	3	3	4

System	$lpha_s$	b (GeV ²)	σ (GeV)	C (GeV)
Λ_c / Σ_c	0.560	0.122	1.600	-0.633
$\Xi_c^{(\prime)}$	0.560	0.140	1.600	-0.693
Ω_c	0.578	0.144	1.732	-0.688
meson	0.578	0.144	1.028	-0.685
	$m_{u/d} = 0.370$	GeV $m_s = 0.60$	00 GeV $m_c = 1.880$ GeV	

Decay:

 $\bar{3}_f$:

Decay channels	M_f (MeV)	$\Lambda_c(1F,5/2^-)$	$\Lambda_c(1F,7/2^-)$
$\overline{\Sigma_c(1S,3/2^+)\pi}$	2520	0.5	0.8
$\Sigma_{c2}(1P, 3/2^{-})\pi$	2779	9.5	0.2
$\Sigma_{c2}(1P, 5/2^{-})\pi$	2796	0.8	9.5
ND		9.9	11.8
ND^*		21.6	40.2
• • •		1.0	0.8
Total		43.3	63.3

Br $[\Lambda_c(1F, 5/2^-) \rightarrow ND^*] \approx 49.9\%$, Br $[\Lambda_c(1F, 7/2^-) \rightarrow ND^*] \approx 63.5\%$.

Decay channels	M_f (MeV)	$\Xi_c(1F, 5/2^-)$	$\Xi_c(1F, 7/2^-)$
$\overline{\Xi_{c2}'(1P,3/2^{-})\pi}$	2926	1.5	0.1
$\Xi_{c2}^{\prime}(1P,5/2^{-})\pi$	2945	0.2	1.6
$\Sigma_{c}^{c}(1S, 1/2^{+})\bar{K}$	2455	0.7	0.7
$\Sigma_c(1S, 3/2^+)\bar{K}$	2520	1.2	1.7
$\Sigma_{c2}(1P,3/2^-)\bar{K}$	2779	4.4	0.0
$\Sigma_{c2}(1P, 5/2^{-})\bar{K}$	2796	0.0	0.6
ΛD		0.5	2.1
ΣD		10.0	22.9
ΛD^*		4.0	5.2
ΣD^*		28.3	54.3
•••		0.9	0.9
Total		51.7	90.1

Br $[\Xi_c(1F, 5/2^-) \rightarrow \Sigma D^*] \approx 54.7\%$, Br $[\Xi_c(1F, 7/2^-) \rightarrow \Sigma D^*] \approx 60.2\%$.

	$\Sigma_c(1F)$	$\Xi_c'(1F)$	$\Omega_c(1F)$
Singly charmed baryon	$\Sigma_c(1P)\pi$	$\Sigma_c(1P)\bar{K}$	Small predicted branching ratios
+ light flavor meson	$\Sigma_c(1D)\pi$	$\Lambda_c(1P)\bar{K}$	
	$\Lambda_c\pi\pi$	$\Lambda_c ar{K} \pi$	
	•••	•••	
Light flavor baryon	ΔD	Σ^*D	Br $[\Omega_{c2}(1F, 3/2^{-}) \to \Xi^*D] \approx 30.8\%$
+ Singly charmed meson			Br $[\Omega_{c2}(1F, 3/2^{-}) \to \Xi D^{*}] \approx 42.2\%$
	•••	•••	•••

Some typical decay channels in theoretical calculations

Coupled-channel effects

- 1. Most hadrons could be well interpreted in conventional quark model.
- 2. Masses of $\Lambda(1405)$, $D_{s0}^*(2317)$, X(3872), etc. are about 100 MeV less than the quark model predictions.
- 3. $\Lambda_c(2940)$ is the first charmed baryon which has abnormal mass.

Numerical results

- \checkmark In the framework of coupled channel, the mass $\Lambda_c(2940)$ could be well interpreted.
- ✓ In Ref. [1], the authors introduce hadron-hadron interaction in the loop and obtained lower masses then this work.
- [1] Z. L. Zhang, Z. W. Liu, S. Q. Luo, F. L. Wang,B. Wang and H. Xu, Phys. Rev. D 107, 034036 (2023)

Hadron loop in Ω_c

- There exist significant coupled channel effect in $D_{s0}^*(2317)$.
- We replace \bar{s} with ss, then how coupled channel effect affect Ω_c .

- The physical mass of $\Omega_{c0}^d(1P, 1/2^-)$ are predicted as 2945 MeV, which mass shift is about 97 MeV.
- We suggest search for $\Omega_{c0}^d(1P, 1/2^-)$ in Belle II, LHCb, and so on.

Radiative decays

Processes	Status
$\overline{\Xi_c^{\prime +} \to \Xi_c^+ \gamma}$	\checkmark
$\Xi_c^{\prime 0} \to \Xi_c^0 \gamma$	\checkmark
$\Omega_c^{*0} o \Omega_c^0 \gamma$	\checkmark
$\Xi_c^0(2790) \to \Xi_c^0 \gamma$	\checkmark
$\Xi_c^0(2815) \to \Xi_c^0 \gamma$	\checkmark
$\Xi_c^+(2790) \to \Xi_c^+ \gamma$	Upper limits
$\Xi_c^+(2815) \to \Xi_c^+ \gamma$	Upper limits

Observed radiative decays of singly charmed baryons

Dragage	0114	Ref.	Ref.	Drococc	0,1,4	Ref.	Ref.	Expt.
Process	Our	[1]	[2]	Process	Our	[1]	[2]	[3]
$\overline{\Lambda_c^+(1P, \frac{1}{2}^-) \to \Lambda_c^+(1S, \frac{1}{2}^+) \gamma}$	0.1	0.26	0.1	$\Xi_c^0(1P, \frac{1}{2}) \to \Xi_c^0(1S, \frac{1}{2}) \gamma$	217.5	263	202.5	800 ± 320
$\Lambda_c^+(1P, \frac{\bar{1}}{2}) \to \Sigma_c^+(1S, \frac{\bar{1}}{2}) \gamma$	0.3	0.45	1.0	$\Xi_c^0(1P, \frac{\bar{1}}{2}) \to \Xi_c^{\prime 0}(1S, \frac{\bar{1}}{2}) \gamma$	0.0	0.0	0.0	
$\Lambda_c^+(1P, \frac{1}{2}) \to \Sigma_c^{*+}(1S, \frac{3}{2}) \gamma$	0.0	0.05	0.0	$\Xi_c^0(1P, \overline{\frac{1}{2}}) \to \Xi_c^{*0}(1S, \overline{\frac{3}{2}}) \gamma$	0.0	0.0	0.0	• • •
$\Lambda_c^+(1P, \frac{3}{2}) \to \Lambda_c^+(1S, \frac{1}{2}) \gamma$	0.8	0.30	0.7	$\Xi_c^0(1P, \frac{3}{2}) \to \Xi_c^0(1S, \frac{1}{2}) \gamma$	243.1	292	292.6	$320 \pm 45^{+45}_{-80}$
$\Lambda_c^+(1P, \frac{3}{2}) \to \Sigma_c^+(1S, \frac{1}{2}) \gamma$	0.9	1.17	2.5	$\Xi_c^0(1P, \frac{3}{2}) \to \Xi_c^{\prime 0}(1S, \frac{1}{2}) \gamma$	0.0	0.0	0.1	•••
$\Lambda_c^+(1P, \frac{3}{2}) \to \Sigma_c^{*+}(1S, \frac{3}{2}) \gamma$	0.2	0.26	0.2	$\Xi_c^0(1P, \frac{3}{2}) \to \Xi_c^{*0}(1S, \frac{3}{2}) \gamma$	0.0	0.0	0.0	•••
				$\Xi_c^+(1P, \frac{1}{2}) \rightarrow \Xi_c^+(1S, \frac{1}{2}) \gamma$	1.7	4.65	7.4	< 350
				$\Xi_c^+(1P, \frac{1}{2}) \to \Xi_c^{\prime+}(1S, \frac{1}{2}) \gamma$	1.2	1.43	1.3	
				$\Xi_c^+(1P, \frac{1}{2}) \to \Xi_c^{*+}(1S, \frac{3}{2}) \gamma$	0.5	0.44	0.1	•••
				$\Xi_c^+(1P, \frac{3}{2}) \to \Xi_c^+(1S, \frac{1}{2}) \gamma$	1.0	2.8	4.8	< 80
				$\Xi_c^+(1P, \frac{3}{2}) \to \Xi_c^{\prime+}(1S, \frac{1}{2}) \gamma$	2.1	2.32	2.9	•••
				$\Xi_c^+(1P,\frac{\bar{3}}{2}) \to \Xi_c^{*+}(1S,\frac{\bar{3}}{2}) \gamma$	1.2	0.99	0.3	•••

- [1] K. L. Wang, Y. X. Yao, X. H. Zhong, and Q. Zhao, Phys. Rev. D 96, 116016 (2017).
- [2] E. Ortiz-Pacheco and R. Bijker, Phys. Rev. D 108, 054014 (2023).
- [3] [Belle Collaboration] Phys. Rev. D 102, 071103 (2020).

Drogoss	Our	Ref. Ref. Ref. Process	Our	Ref.	Ref.	Ref.			
Process	Our	[1]	[2]	[3]	Process	Our	[1]	[2]	[3]
$\Sigma_c^{*0}(1S, \frac{3}{2}^+) \rightarrow \Sigma_c^0(1S, \frac{1}{2}^+) \gamma$	1.3	3.43	1.8	1.378	$\Xi_c^{\prime 0}(1S, \frac{1}{2}^+) \to \Xi_c^0(1S, \frac{1}{2}^+) \gamma$	0.3	0.0	0.4	0.342
$\Sigma_c^+(1S, \frac{1}{2}^+) \rightarrow \Lambda_c^+(1S, \frac{1}{2}^+) \gamma$	59.2	80.6	87.2	93.5	$\Xi_c^{*0}(1S, \tfrac{3}{2}^+) \longrightarrow \Xi_c^0(1S, \tfrac{1}{2}^+) \gamma$	1.1	0.0	1.6	1.322
$\Sigma_c^{*+}(1S, \frac{3}{2}^+) \rightarrow \Lambda_c^+(1S, \frac{1}{2}^+) \gamma$	132.8	373	199.4	231	$\Xi_c^{*0}(1S, \tfrac{3}{2}^+) \longrightarrow \Xi_c^{\prime 0}(1S, \tfrac{1}{2}^+)\gamma$	1.0	3.03	1.4	1.262
$\Sigma_c^{*+}(1S, \frac{3}{2}^+) \rightarrow \Sigma_c^+(1S, \frac{1}{2}^+) \gamma$	0.0	0.004	0.0	0.00067	$\Xi_c^{\prime+}(1S, \frac{1}{2}^+) \to \Xi_c^+(1S, \frac{1}{2}^+) \gamma$	14.9	42.3	20.6	21.38
$\Sigma_c^{*++}(1S, \frac{3}{2}^+) \rightarrow \Sigma_c^{++}(1S, \frac{1}{2}^+)\gamma$	1.7	3.94	2.1	1.483	$\Xi_c^{*+}(1S, \tfrac{3}{2}^+) \longrightarrow \Xi_c^+(1S, \tfrac{1}{2}^+)\gamma$	52.7	139	74.2	81.9
					$\Xi_c^{*+}(1S, \frac{3}{2}^+) \rightarrow \Xi_c^{\prime+}(1S, \frac{1}{2}^+)\gamma$	0.1	0.004	0.1	0.029
					$\overline{\Omega_c^{*0}(1S, \frac{3}{2}^+) \rightarrow \Omega_c^0(1S, \frac{1}{2}^+)\gamma}$	0.9	0.89	1.0	1.14

- [1] K. L. Wang, Y. X. Yao, X. H. Zhong, and Q. Zhao, Phys. Rev. D 96, 116016 (2017).
- [2] E. Ortiz-Pacheco and R. Bijker, Phys. Rev. D 108, 054014 (2023).
- [3] A. Hazra, S. Rakshit, and R. Dhir, Phys. Rev. D 104, 053002 (2021).

Symmetry

1. Hadrons with different numbers of strange quarks have similar excited energies

$nL(J^P)$	States	Masses	Gaps	
$1S(1/2^{+})$	$\Lambda_c(2286)^+/\Xi_c(2470)^+$	2286.5/2467.9	181.4	$m_{\Xi_c} - m_{\Lambda_c} \approx \text{const}$
$1P(1/2^{-})$	$\Lambda_c(2595)^+/\Xi_c(2790)^+$	2592.3/2792.4	200.1	
$1P(3/2^{-})$	$\Lambda_c(2625)^+/\Xi_c(2815)^+$	2628.1/2816.7	188.6	
$2S(1/2^+)$	$\Lambda_c(2765)^+/\Xi_c(2970)^+$	2766.6/2966.3	199.7	
$1D(3/2^{+})$	$\Lambda_c(2860)^+/\Xi_c(3055)^+$	2856.1/3055.9	199.8	
$1D(5/2^{+})$	$\Lambda_c(2880)^+/\Xi_c(3080)^+$	2881.6/3077.2	195.6	

$nL(J^P)$	States	Gaps
$1S(1/2^{+})$	$\Sigma_c(2455)^{++}/\Xi_c'(2570)^+/\Omega_c(2695)^0$	124.4/116.8
	$\Sigma_b(5815)^+/\Xi_b'(5935)^-/\Omega_b(6046)^-$	124.4/111.1
$1S(3/2^{+})$	$\Sigma_c^*(2520)^{++}/\Xi_c^*(2645)^+/\Omega_c(2765)^0$	127.2/120.3
	$\Sigma_b^*(5835)^+/\Xi_b^*(5955)^-/\Omega_b^-(\cdots)$	125.0/ · · ·
$1P(\frac{3}{2}^{-} \text{ or } \frac{5}{2}^{-})$	$\Sigma_c(2800)^{++}/\Xi_c'(2939)^0/\Omega_c(3065)^0$	137.6/127.0
	$\Sigma_b(6097)^-/\Xi_b'(6227)^-/\Omega_b(6350)^-$	128.9/123.0

$$m_{\Omega_c} - m_{\Xi_c'} pprox m_{\Xi_c'} - m_{\Sigma_c}$$

Λ_Q	Mass splits	Ξ_Q	Mass splits
$\Lambda_c(2595)^+/\Lambda_c(2625)^+$	35.8	$\Xi_c(2790)^+/\Xi_c(2815)^+$	24.3
$\Lambda_c(2860)^+/\Lambda_c(2880)^+$	25.5	$\Xi_c(3055)^+/\Xi_c(3080)^+$	21.3

2. Λ_Q and Ξ_Q have similar mass splits with orbital excited doublet

3. ρ - and λ -mode excited singly charmed baryons have different behaviour

$\overline{\Lambda_c(2286)}$	$\Lambda_c(2765)$	$\Lambda_c(2595)$	$\Lambda_c(2625)$	$\Lambda_c(2860)$	$\Lambda_c(2880)$
2286.5	2766.6	2592.3	2628.1	2856.1	2881.6
2286	2788	2595	2620	2858	2871
$\Xi_c(2468)$	$\Xi_c(2970)$	$\Xi_c(2790)$	$\Xi_c(2815)$	$\Xi_c(3055)$	$\Xi_c(3080)$
2467.9	2966.3	2792.4	2816.7	3055.9	3077.2
2466	2985	2786	2811	3060	3071
$\overline{\Sigma_c(2455)}$	$\Sigma_c(2520)$	$\Sigma_c(2800)$			
2454.0	2518.4	2801.0			
2463	2511	2791			
$\Xi_c'(2580)$	$\Xi_c'(2645)$	$\Xi_{c}^{\prime}(2923)$	$\Xi_{c}^{\prime}(2939)$	$\Xi_c'(2965)$	
2578.4	2645.6	2923.0	2938.6	2964.9	
2595	2648	2928	2949	2934	

 λ -mode excited $\Lambda_c / \Sigma_c / \Xi_c^{(\prime)}$

Mass Gaps are related to both m_s - $m_{u/d}$ and contact term.

 ρ -mode excited $\Lambda_c / \Sigma_c / \Xi_c^{(\prime)}$

	$ 1/2^-\rangle_L$	$ 1/2^-\rangle_H$	$ 3/2^-\rangle_L$	$ 3/2^-\rangle_H$	$ 5/2^-\rangle$
$\overline{\Lambda^{ ho}_{c}(1P)}$	2862	2868	2834	2891	2863
$\Xi_c^{\rho}(1P)$	3010	3016	2988	3048	3021
ΔM	148	148	154	157	158
	$ 1/2^{-}\rangle$	$ 3/2^-\rangle$			
$\overline{\Sigma_c^{ ho}(1P)}$	2854	2874			
$\Xi_c^{\prime ho}(1P)$	3005	3027			
ΔM	151	153			

 $m_{u/d} = 310 \text{ MeV}, m_s = 450 \text{ MeV}, m_c = 1650 \text{ MeV}$ $m_{\Xi_c^{\rho}} - m_{\Lambda_c^{\rho}} \approx 150 \text{ MeV}$ $m_{\Xi_c'^{\rho}} - m_{\Sigma_c'^{\rho}} \approx 150 \text{ MeV}$ $m_s - m_{u/d} = 140 \text{ MeV}$

Mass Gaps are mainly related to m_s - $m_{u/d}$.

Summary

- Most observed singly charmed baryons are consistent with the theoretical calculations.
- Some abnormal spectra could be explained by hadron loop.
- We suggest study some states with radiative decays.
- Singly charmed baryons have high symmetry.

谢谢各位批评指正