

# Exotic states in charmed baryon decays

### 王恩

吕文韬, 李莹, 张胜超

吴佳俊,王冠颖,耿立升,谢聚军

2024年7月7日-7月12日

2024年超级陶粲装置研讨会@兰州



### **Exotic states**

**From Li-Sheng Geng** 



### Hadrons



C.Z.Yuan, Nature Rev. Phys. 1 (2019) 480



FKGuo, et.al, Mod. Phys. 90 (2018) 015004

3

# **Ground light baryons**

### **Ground baryons**





### 盖尔曼-大久保质量:

$$M = a + bY + c \left[ I(I+1) - \frac{1}{4}Y^2 \right]$$

#### 质量公式预言 m<sub>Ω</sub>=1670 MeV 实验: m<sub>Ω</sub>=1672.45±0.29 MeV

# **Low-lying baryons with J<sup>P</sup>=1/2**-

### 1/2<sup>-</sup> baryon nonet with strangeness

Zou, EPJA 35 (2008) 325

• Mass pattern : quenched or unquenched ?

uds (L=1)  $1/2^- \sim \Lambda^*(1670) \sim [us][ds] \overline{s}$ uud (L=1)  $1/2^- \sim N^*(1535) \sim [ud][us] \overline{s}$ uds (L=1)  $1/2^- \sim \Lambda^*(1405) \sim [ud][su] \overline{u}$ uus (L=1)  $1/2^- \sim \Sigma^*(1390) \sim [us][ud] \overline{d}$ Zou et al, NPA835 (2010) 199 ; CLAS, PRC87(2013)035206

 Strange decays of N\*(1535) and Λ\*(1670): N\*(1535) large couplings g<sub>N\*Nη</sub>, g<sub>N\*KΛ</sub>, g<sub>N\*Nη</sub>, g<sub>N\*Nη</sub>, g<sub>N\*Nη</sub>
 Λ\*(1670) large coupling g<sub>Λ\*Λη</sub>

#### 邹冰松老师报告

Citation: R.L. Workman et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2022, 083C01 (2022)

$$\Sigma(1620) \ 1/2^{-}$$

 $I(J^P) = 1(\frac{1}{2})$  Status: \*

OMITTED FROM SUMMARY TABLE

Citation: M. Tanabashi et al. (Particle Data Group), Phys. Rev. D 98, 030001 (2018) and 2019 updat

$$\Sigma(1480)$$
 Bumps

 $I(J^{P}) = 1(?^{?})$  Status: \*

OMITTED FROM SUMMARY TABLE These are peaks seen in  $\Lambda\pi$  and  $\Sigma\pi$  spectra in the reaction  $\pi^+ p \rightarrow (Y\pi)K^+$  at 1.7 GeV/c. Also, the Y polarization oscillates in the same region.

# **Review about** $\Sigma^*(1/2^-)$

### **arxiv: 2406.07839**

#### Review of the low-lying excited baryons $\Sigma^*(1/2^-)$

En Wang,<sup>1,2,</sup>\* Li-Sheng Geng,<sup>3,4,5,6,†</sup> Jia-Jun Wu,<sup>7,6,‡</sup> Ju-Jun Xie,<sup>6,8,9,§</sup> and Bing-Song Zou<sup>10,11,7,6,¶</sup>

Strong empirical and phenomenological indications exist for large sea-quark admixtures in the low-lying excited baryons. Investigating the low-lying excited baryon  $\Sigma^*(1/2^-)$  is important to determine the nature of the low-lying excited baryons. We review the experimental and theoretical progress on the studies of the  $\Sigma^*(1/2^-)$ . Although several candidates have received intensive discussions, such as  $\Sigma(1620)$  and  $\Sigma(1480)$ , their existence needs further confirmation. Following the prediction of the unquenched quark models for the  $\Sigma^*(1/2^-)$ , many theoretical works suggested the existence of these states in various processes. Future experimental measurements could shed light on the existence of the low-lying excited  $\Sigma^*(1/2^-)$  state.



### 1-star state $\Sigma(1620)$

### **DPDG2024**

#### **Σ(1620) MASS**

| VALUE (MeV)                       | DOCUMENT ID          |         | TECN        | COMMENT                           |
|-----------------------------------|----------------------|---------|-------------|-----------------------------------|
| 1600 to 1650 (≈ 1620) OUR ESTI    | MATE                 |         |             |                                   |
| 1681± 6                           | SARANTSEV            | 19      | DPWA        | <b>K</b> N multichannel           |
| $1600 \pm 15$                     | ZHANG                | 13A     | DPWA        | <b>K</b> N multichannel           |
| 1600± 6                           | <sup>1</sup> MORRIS  | 78      | DPWA        | $K^- n \rightarrow \Lambda \pi^-$ |
| 1608± 5                           | <sup>2</sup> CARROLL | 76      | DPWA        | lsospin-1 total $\sigma$          |
| $1630 \pm 10$                     | LANGBEIN             | 72      | <b>IPWA</b> | <b>K</b> N multichannel           |
| 1620                              | KIM                  | 71      | DPWA        | K-matrix analysis                 |
| • • • We do not use the following | data for averages    | , fits, | limits, e   | tc. • • •                         |
| 1633±10                           | <sup>3</sup> CARROLL | 76      | DPWA        | lsospin-1 total $\sigma$          |

#### **Σ(1620) WIDTH**

| VALUE (MeV)                                           | DOCUMENT ID          |          | TECN        | COMMENT                           |
|-------------------------------------------------------|----------------------|----------|-------------|-----------------------------------|
| 40 to 100 (≈ 70) OUR ESTIMAT                          | E                    |          |             |                                   |
| 40± 12                                                | SARANTSEV            | 19       | DPWA        | <b><i>KN</i></b> multichannel     |
| 400±152                                               | ZHANG                | 13A      | DPWA        | $\overline{K}N$ multichannel      |
| 87± 19                                                | <sup>1</sup> MORRIS  | 78       | DPWA        | $K^- n \rightarrow \Lambda \pi^-$ |
| 15                                                    | <sup>2</sup> CARROLL | 76       | DPWA        | lsospin-1 total $\sigma$          |
| 65± 20                                                | LANGBEIN             | 72       | <b>IPWA</b> | $\overline{K}N$ multichannel      |
| 40                                                    | KIM                  | 71       | DPWA        | K-matrix analysis                 |
| $\bullet \ \bullet \ \Psi e$ do not use the following | data for averages    | s, fits, | limits, e   | etc. • • •                        |
| 10                                                    | <sup>3</sup> CARROLL | 76       | DPWA        | lsospin-1 total $\sigma$          |

Eur. Phys. J. A (2019) **55**: 180 DOI 10.1140/epja/i2019-12880-5

THE EUROPEAN PHYSICAL JOURNAL A

Regular Article – Experimental Physics

#### Hyperon II: Properties of excited hyperons

A.V. Sarantsev<sup>1,2</sup>, M. Matveev<sup>1,2</sup>, V.A. Nikonov<sup>1,2</sup>, A.V. Anisovich<sup>1,2</sup>, U. Thoma<sup>1</sup>, and E. Klempt<sup>1,a</sup>

 $\Sigma(1620)1/2^-$  and  $\Sigma(1750)1/2^-$ : The  $\Sigma(1620)1/2^-$  to  $\Sigma(1750)1/2^-$  region is problematic. If we assume no resonance, the fit is unacceptable. A fit with one  $1/2^-$  resonance only returns a mass of  $M = (1692 \pm 11)$  MeV and  $\Gamma = (208 \pm 18)$  MeV. We tentatively identify this resonance with  $\Sigma(1750)1/2^-$ . The real part of our pole positive mass of  $(1092 \pm 11)$  MeV, which is below  $M_n + M_{\Sigma}$ . Our

BRs add up to  $(78\pm11)\%$ . A fit with two resonances gives a small but significant improvement for a second narrow resonance, which is found only slightly below  $\Sigma(1750)1/2^-$ . We list this resonance under  $\Sigma(1620)1/2^-$  even though these are likely different objects. We find a sum of branch-

### **Exp. signals of \Sigma(1480)**

 $\pi^+ p \rightarrow \pi^+ K^+ \Lambda$ Yu-Li Pan et al, PRD2, 449 (1970)

GeV<sup>2</sup>

EVENTS/0.02

 $e^+p \rightarrow e^+K^0$ pX ZEUS PLB591 (2004) 7–22

### $pp \rightarrow pK^+Y^{0*}$ COSY-Juich PRL 96, 012002 (2006)



笃信仁厚 深思勤勉

8

### Evidence of $\Sigma^*(1/2^-)$

 $\Box K^- p \rightarrow \Lambda \pi^+ \pi^-$ , Wu-Dulat-Zou, PRD80(2009)017503



$$\frac{dN}{dm_{\Lambda\pi^-}} \propto p_1 \times p_2 \times \sum_{i=1}^3 \frac{|a_i|}{(m_{\Lambda\pi^-}^2 - m_i^2)^2 + m_i^2 \times \Gamma_i^2},$$

Here we reexamine some old data of the  $K^- p \rightarrow \Lambda \pi^+ \pi^-$  reaction and find that besides the well-established  $\Sigma^*(1385)$  with  $J^P = 3/2^+$ , there is indeed some evidence for the possible existence of a new  $\Sigma^*$  resonance with  $J^P = 1/2^-$  around the same mass but with broader decay width. There are also indications for such a possibility in the  $J/\psi \rightarrow \bar{\Sigma}\Lambda\pi$  and  $\gamma n \rightarrow K^+\Sigma^{*-}$  reactions. At present, the evidence is not strong. Therefore, high statistics studies

|      | $M_{\Sigma^{*}(3/2)}$  | $\Gamma_{\Sigma^*(3/2)}$ | $M_{\Sigma^{*}(1/2)}$  | $\Gamma_{\Sigma^*(1/2)}$ | $\chi^2/\text{ndf}$ (Fig. 1) | $\chi^2/\text{ndf}$ (Fig. 2) |  |
|------|------------------------|--------------------------|------------------------|--------------------------|------------------------------|------------------------------|--|
| Fit1 | $1385.3 \pm 0.7$       | 46.9 ± 2.5               | a***a* 10              | 1204 - 114               | 68.5/54                      | 10.1/9                       |  |
| Fit2 | $1386.1^{+1.1}_{-0.9}$ | $34.9^{+5.1}_{-4.9}$     | $1381.3^{+4.9}_{-8.3}$ | $118.6^{+55.2}_{-35.1}$  | 58.0/51                      | 3.2/9                        |  |

# **Evidence of \Sigma^\*(1/2^-)**



# Search for $\Sigma^*(1/2^-)$

 $> \Lambda_c^+ → \Lambda \eta \pi$ , Xie-Geng, PRD95(2017) 074024, JJWu-EW-LSGeng-JJXie, 2405.09226

ightarrow γn → KΣ(1/2<sup>-</sup>), Lyu-EW-Xie-Wei, CPC47 (2023) 053108

 $\succ \chi_{c0} \rightarrow \overline{\Sigma}\Sigma\pi$ , EW-Xie-Oset, PLB753(2016)526

 $\succ \chi_{c0} \rightarrow \overline{\Lambda}\Sigma\pi$ , EW-Xie-Oset, PRD98(2018)114017

 $ightarrow \Lambda_{c} \rightarrow \Sigma^{+} \pi^{+} \pi^{0} \pi^{-}$ , Xie-Oset, Phys.Lett.B 792 (2019) 450

 $\succ \gamma N \rightarrow \Sigma(1/2^{-})N$ , Kim-Nam-Hosaka, PRD(2021)114017

 $ightarrow \Lambda_{c}^{+} \rightarrow \overline{K}^{0} \eta p$ , YLi-SWLiu-**EW**-DMLi-LSGeng-JJXie, 2406.01209

**Review of**  $\Sigma^*(1/2^-)$ **, EW-JJWu-JJXie-LSGeng-BSZou2406.07839** 

▶....

# **Low-lying baryons with J<sup>P</sup>=1/2**-

### **Chiral Lagrangian**

$$L_{1}^{(B)} = \langle \bar{B}i\gamma^{\mu}\nabla_{\mu}B\rangle - M_{B}\langle \bar{B}B\rangle + \frac{1}{2}D\langle \bar{B}\gamma^{\mu}\gamma_{5}\{u_{\mu},B\}\rangle + \frac{1}{2}F\langle \bar{B}\gamma^{\mu}\gamma_{5}[u_{\mu},B]\rangle$$

$$\nabla_{\mu}B = \partial_{\mu}B + [\Gamma_{\mu}, B],$$
  

$$\Gamma_{\mu} = \frac{1}{2}(u^{+}\partial_{\mu}u + u\partial_{\mu}u^{+}), \quad \text{Oset Ramos,}$$
  

$$U = u^{2} = \exp(i\sqrt{2}\Phi/f), \quad \text{NPA635(1998)99}$$
  

$$u_{\mu} = iu^{+}\partial_{\mu}Uu^{+}.$$

$$\Phi = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & \pi^{+} & K^{+} \\ \pi^{-} & -\frac{1}{\sqrt{2}}\pi^{0} + \frac{1}{\sqrt{6}}\eta & K^{0} \\ K^{-} & \bar{K}^{0} & -\frac{2}{\sqrt{6}}\eta \end{pmatrix}, \quad B = \begin{pmatrix} \frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda & \Sigma^{+} & p \\ \Sigma^{-} & -\frac{1}{\sqrt{2}}\Sigma^{0} + \frac{1}{\sqrt{6}}\Lambda & n \\ \Xi^{-} & \bar{\Xi}^{0} & -\frac{2}{\sqrt{6}}\Lambda \end{pmatrix}$$
  
At lowest order in momentum 
$$V_{ij} = -C_{ij}\frac{1}{4f^{2}}\bar{u}(p')\gamma^{\mu}u(p)(k_{\mu} + k'_{\mu})$$

#### At lowest order in momentum

$$L_1^{(B)} = \left\langle \bar{B}i\gamma^{\mu}\frac{1}{4f^2} \left[ \left( \Phi \partial_{\mu}\Phi - \partial_{\mu}\Phi\Phi \right) B - B(\Phi \partial_{\mu}\Phi - \partial_{\mu}\Phi\Phi) \right] \right\rangle,$$

**Neglect the spatial components at**  
**low energies**  
$$V_{ij} = -C_{ij}\frac{1}{4f^2}(k^0 + k'^0)$$

# **Low-lying baryons with J<sup>P</sup>=1/2**-

| I=0           | Ŕ  | N               | $\pi \Sigma$          | $\eta \Lambda$        | KΞ                    |
|---------------|----|-----------------|-----------------------|-----------------------|-----------------------|
| ĒΝ            | 2  | 5               | $-\sqrt{\frac{3}{2}}$ | $\frac{3}{\sqrt{2}}$  | 0                     |
| $\pi\Sigma$   |    |                 | 4                     | 0                     | $\sqrt{\frac{3}{2}}$  |
| $\eta A$      |    |                 |                       | 0                     | $-\frac{3}{\sqrt{2}}$ |
| KΞ            |    |                 |                       |                       | 3                     |
|               |    |                 |                       |                       |                       |
| I=1           | ĒΝ | $\pi \Sigma$    | $\pi \Lambda$         | ηΣ                    | KΞ                    |
| ĒΝ            | 1  | 1               | $-\sqrt{\frac{3}{2}}$ | $-\sqrt{\frac{3}{2}}$ | 0                     |
| $\pi \Sigma$  |    | 2               | 0                     | 0                     | 1                     |
| $\pi A$       |    |                 | 0                     | 0                     | $-\sqrt{\frac{3}{2}}$ |
| $\eta \Sigma$ |    |                 |                       | 0                     | $-\sqrt{\frac{3}{2}}$ |
| КΞ            |    | 198 - 198 - 500 |                       |                       | 1                     |

 $V_{ij} = -C_{ij}\frac{1}{4f^2}(k^0 + k'^0)$ 

#### **Lippmann-Schwinger equations**

 $t_{ij}=V_{ij}+V_{il}G_lT_{lj}\,,$ 

$$V_{il}G_lT_{lj} = i \int \frac{d^4q}{(2\pi)^4} \frac{M_l}{E_l(q)} \frac{V_{il}(k,q)T_{lj}(q,k')}{k^0 + p^0 - q^0 - E_l(q) + i\epsilon} \frac{1}{q^2 - m_l^2 + i\epsilon}$$

![](_page_12_Figure_6.jpeg)

#### **On-shell approximations**

$$2iV_{\rm on} \int \frac{d^3q}{(2\pi)^3} \int \frac{dq^0}{2\pi} \frac{M}{E(q)} \frac{q^0 - k^0}{k^0 - q^0} \frac{1}{q^{02} - \omega(q)^2 + i\epsilon}$$

笃信仁厚 深思勤勉

14

# Low-lying baryons with JP=1/2-

### **Bethe-Salpter Equation**

#### - 1580 250-(I=1) $G_{l} = i \int \frac{d^{4}q}{(2\pi)^{4}} \frac{M_{l}}{E_{l}(q)} \frac{1}{k^{0} + p^{0} - q^{0} - E_{l}(q) + i\epsilon} \frac{1}{q^{2} - m^{2} + i\epsilon}$ 200 m z<sub>R</sub> [MeV] $= \int \frac{d^3q}{(2\pi)^3} \frac{1}{2\omega_l(q)} \frac{M_l}{E_l(q)} \frac{1}{p^0 + k^0 - \omega_l(q) - E_l(q) + i\epsilon},$ 150 disappear x=0.5(I=1)100 --- 1390 x = 1.0<u>A</u> 1426 (I=0) $G_l = i2M_l \int \frac{d^4q}{(2\pi)^4} \frac{1}{(P-q)^2 - M_l^2 + i\epsilon} \frac{1}{q^2 - m_l^2 + i\epsilon}$ 50 (I=0)(I=0)x=1.0 x=0.5 0 x=0.5 $=\frac{2M_l}{16\pi^2}\left\{a_l(\mu)+\ln\frac{M_l^2}{\mu^2}+\frac{m_l^2-M_l^2+s}{2s}\ln\frac{m_l^2}{M_l^2}\right\}$ 1300 1400 1500 1600 1700 Octet $\text{Re} z_{R}$ [MeV] Singlet $+ \frac{q_l}{\sqrt{s}} \left[ \ln(s - (M_l^2 - m_l^2) + 2q_l\sqrt{s}) + \ln(s + (M_l^2 - m_l^2) + 2q_l\sqrt{s}) \right]$ pole positions and couplings $-\ln(-s + (M_l^2 - m_l^2) + 2q_l\sqrt{s}) - \ln(-s - (M_l^2 - m_l^2) + 2q_l\sqrt{s})]$ $T_{ij} = \frac{g_i g_j}{7 - 7 P}$

 $T = [1 - VG]^{-1}V$ 

#### Jido Oller Oset Ramos Meissner NPA725 (2003) 181

# **Σ**<sup>\*</sup>(1/2<sup>-</sup>) in the $\pi\Sigma$ photoproduction

### $\Box \pi \Sigma$ photoproduction, Roca-Oset, PRC 88, 055206 (2013)

![](_page_14_Figure_3.jpeg)

![](_page_14_Figure_4.jpeg)

FIG. 6. Predicted  $K^-p$  cross sections (in millibarns). Experimental data are from Ref. [46].

# <u>Σ(1430)</u>

### $\Box \pi \Sigma$ photoproduction, Roca-Oset, PRC 88, 055206 (2013)

![](_page_15_Figure_3.jpeg)

![](_page_15_Figure_4.jpeg)

Oset-Ramos, NPA635 (1998) 99 [nucl-th/9711022].
PB,VB, Hosaka, PRD 85, 114020 (2012)
Oller-Meißner, Phys. Lett. B 500 (2001) 263 [hep-ph/0011146]

| Hadronic decays                                |                          |
|------------------------------------------------|--------------------------|
| $\Lambda_c \rightarrow pK\pi$ + 11 CF modes    | PRL 116, 052001 (2016)   |
| $\Lambda_c  ightarrow pK^+K^-$ , $p\pi^+\pi^-$ | PRL 117, 232002 (2016)   |
| $\Lambda_c \to nK_s\pi$                        | PRL 118, 112001 (2017)   |
| $\Lambda_c 	o p\eta, p\pi^0$                   | PRD 95, 111102(R) (2017) |
| $\Lambda_c 	o \Sigma \pi^+ \pi^- \pi^0$        | PLB 772, 338 (2017)      |
| $\Lambda_c 	o \Xi^{0(*)} K$                    | PLB 783, 200 (2018)      |
| $\Lambda_c 	o \Lambda \eta \pi$                | PRD 99, 032010 (2019)    |
| $\Lambda_c 	o pK_s \eta$                       | PLB 817 (2021) 136327    |

• Markl  $\Xi_c \overline{\Xi}_c \Omega_c^0 \overline{\Omega}_c^0$ R • BES  $\Sigma_c \overline{\Sigma}_c$ ....SLAC. 5 Crystal × pluto KEDR 00 4 察除 🖹 提取文字 🛱 提取表格 3 2  $\Lambda_c^+ \overline{\Lambda}_c^-$ 1  $\sqrt{s}$  (GeV) 2 6

![](_page_16_Figure_3.jpeg)

郑阳恒老师报告

耿聪老师报告

 $\Lambda_{\rm c}^+$  at BESIII

# **Charm hadrons at Belle II/LHCb**

| Experiment | Machine                                     | Operation                                   | C.M.                                     | Luminosity                                                                                | N <sub>prod</sub>                                                                                                                            | Efficiency            | Characters 复旦大学 李阳报告                                                                                                                                              |
|------------|---------------------------------------------|---------------------------------------------|------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ₿€SⅢ       | BEPC-II<br>(e <sup>+</sup> e <sup>-</sup> ) | 2010-2011 (2021-)<br>2016-2019<br>2014+2020 | 3.77 GeV<br>4.18-4.23 GeV<br>4.6-4.7 GeV | 2.9 $(8 \rightarrow 20)$ fb <sup>-1</sup><br>7.3 fb <sup>-1</sup><br>4.5 fb <sup>-1</sup> | $egin{array}{lll} D^{0,+}\colon 10^7(	o 10^8)\ D_s^+\colon 5	imes 10^6\ \Lambda_c^+\colon 0.8	imes 10^6\ \star lpha^+ \end{array}$           | ~ 10-30%<br>★★★       | <ul> <li>extremely clean environment</li> <li>quantum coherence</li> <li>pure D-beam, almost no background</li> <li>no CM boost, no time-dept analyses</li> </ul> |
| Bolle II   | SuperKEKB $(e^+e^-)$                        | 2019-                                       | 10.58 GeV                                | 0.4 ( $\rightarrow$ 50) ab <sup>-1</sup>                                                  | $egin{array}{lll} D^0\colon 6	imes 10^8 \ (	o 10^{11})\ D^+_{(s)}\colon 10^8 \ (	o 10^{10})\ \Lambda^+_c\colon 10^7 \ (	o 10^9) \end{array}$ | $\mathcal{O}(1-10\%)$ | <ul> <li>clear event environment</li> <li>high trigger efficiency</li> <li>good-efficiency detection of neutrals</li> </ul>                                       |
| BELLE      | KEKB<br>(e <sup>+</sup> e <sup>-</sup> )    | 1999-2010                                   | 10.58 GeV                                | $1 \text{ ab}^{-1}$                                                                       | $D: 10^9$ $\Lambda_c^+: 10^8$ $\bigstar \bigstar \bigstar$                                                                                   | **                    | <ul> <li>time-dependent analysis</li> <li>smaller cross-section than LHCb</li> </ul>                                                                              |

Two ways to produce charm samples at Belle (II)

![](_page_17_Figure_4.jpeg)

![](_page_17_Figure_5.jpeg)

![](_page_17_Figure_6.jpeg)

![](_page_17_Figure_7.jpeg)

- > SCS and DCS hadronic decays  $\circ \quad \text{e.g. } \mathcal{Z}_c^0 \to pK^-, \ \mathcal{Z}_c^+ \to pK_S, \ \Omega_c^0 \to \Lambda K_S, \ pK_{\mathcal{S}}^{\mathsf{o}} \to \mathcal{S}_{\mathcal{S}}^{\mathsf{o}}, \ \mathcal{S}_{\mathcal{S}}^{\mathsf{o}} \to \mathcal{S}_{\mathcal{S}}^{\mathsf{o}} \to \mathcal{S}_{\mathcal{S}}^{\mathsf{o}} \to \mathcal{S}_{\mathcal{S}}^{\mathsf{o}}, \ \mathcal{S}_{\mathcal{S}}^{\mathsf{o}} \to \mathcal{S}_{\mathcal{S$
- > Further improvement on mass and lifetime measurement
- > SCS and DCS hadronic decays
  - $\circ \quad \text{e.g.} \ \Xi_c^0 \to pK^-, \ \Xi_c^+ \to pK_S, \ \Omega_c^0 \to \Lambda K_S, \ pK^-$
- > Semi-leptonic decays via b-baryon four-body decays
  - $\circ \text{ e.g. } \Lambda_c^+ \to pK^-\mu^+\nu, p\pi^-\mu^+\nu; \Xi_c^0 \to \Xi^-\mu^+\nu; \Xi_c^+ \to \Lambda\mu^+\nu; \Omega_c^0 \to \Omega^-\mu^+\nu$
- > Decay asymmetries and CPV search via prompt production or b-baryon decays  $\circ \quad \text{e.g. } \Lambda_c^+ \to pK_S, \ \Lambda \pi^+, \ \Lambda K^+; \ \Xi_c^0 \to \Lambda K_S, \ \Xi^-\pi^+, \ \Xi^-K^+; \ \Omega_c^0 \to \Omega^-\pi^+, \Omega^-K^+, \ \Xi^-\pi^+$
- > Amplitude analysis of multi-body hadronic decays

郑阳恒老师报告

# $\underline{\Sigma^*(1/2^-) \text{ in } \Lambda_c^+ \to \Lambda \eta \pi}$

**J.J.Xie, L.S.Geng, EPJC76(2016) 496, PRD95(2017) 074024** 

![](_page_18_Figure_3.jpeg)

# **Belle and BESIII measurements**

 $\Box \Lambda_c^+ \rightarrow \Lambda \eta \pi$ 

![](_page_19_Figure_3.jpeg)

**BESIII: PRD99, 032010 (2019)** 

Belle: PRD103(2021)052005

# **Mechanism of** $\Lambda_{c}^{+} \rightarrow \eta \Lambda \pi$

### **Theometical model**

![](_page_20_Figure_3.jpeg)

![](_page_20_Figure_4.jpeg)

![](_page_20_Figure_5.jpeg)

GYW-EW-Xie-Geng-Wei, PRD 106, 056001 (2022)

### **Analysis the Belle data**

 $\Box \Lambda_c^+ \rightarrow \Lambda \eta \pi$ , GYW-EW-Xie-Geng-Wei, PRD 106, 056001 (2022)

![](_page_21_Figure_3.jpeg)

By regarding the  $\Lambda(1670)$  as the molecule, we could well reproduce the Belle data of the mass distributions.

# **Dalitz plot of** $\Lambda_{c}^{+} \rightarrow \eta \Lambda \pi$

![](_page_22_Figure_2.jpeg)

![](_page_23_Figure_1.jpeg)

# The results with/without $\Sigma(1380)$

![](_page_24_Figure_2.jpeg)

25

# <u>Exp of $\Lambda_c^+ \to \overline{K}^0 \eta p$ </u>

20

10

15

- Unweighted signal MC 🛛 + Data

(b)

1.4

🔶 Data

(c)

1.8

- - Weighted signal MC

1.1

1.5

1.2

 $M(K^0_\eta)$  (GeV/c<sup>2</sup>)

Unweighted signal MC

- - Weighted signal MC

1.6

1.3

1.7

M(pη) (GeV/c<sup>2</sup>)

![](_page_25_Figure_2.jpeg)

#### **BESIII: PLB817 (2021)** 136327

Events/( 40.0 MeV/c<sup>2</sup>) Role of the  $N^*(1535)$  in the  $\Lambda_c^+ o ar K^0 \eta p$  decay Ju-Jun Xie (Lanzhou, Inst. Modern Phys.), Li-Sheng Geng (BeiH Phys.Rev.D 96 (2017) 5, 054009 • e-Print: 1704.05714 • DOI: 10.

Production of  $N^*(1535)$  and  $N^*(1650)$  in  $\Lambda_c o ar{K}^0\eta p~(\pi N)$  decay R. Pavao (Valencia U. and Valencia U., IFIC), S. Sakai (Valencia U. and Valencia U., IFIC), E. Oset Phys.Rev.C 98 (2018) 1, 015201 • e-Print: 1802.07882 • DOI: 10.1103/PhysRevC.98.015201

### Belle: PRD107 (2023) 032004 ×10<sup>3</sup>

![](_page_25_Figure_7.jpeg)

arXiv:2406.01209

 $\underline{\Sigma(1/2^{-}) \text{ in } \Lambda_{c}^{+} \rightarrow \overline{K}^{0}\eta p}$ 

![](_page_26_Figure_2.jpeg)

![](_page_27_Figure_1.jpeg)

![](_page_28_Figure_1.jpeg)

### **Belle measurements**

### $\Box \Lambda_{c}^{+} \rightarrow \Lambda \pi^{+} \pi^{-} \pi^{-}$ , Belle, PRL130, 151903 (2023)

![](_page_29_Figure_3.jpeg)

### **Evidence of \Sigma(1430)**

### $\Box\Lambda_c^+\to\Lambda\pi^+\pi^+\pi^-$

![](_page_30_Figure_3.jpeg)

### **Evidence of \Sigma(1430)**

 $\mathcal{T}^{\mathrm{TS}} = -Ag(\vec{\sigma} \cdot \vec{k}_a t^a_T \mathcal{M}^a + \vec{\sigma} \cdot \vec{k}_b t^b_T \mathcal{M}^b),$  $\Box \Lambda_{c}^{+} \rightarrow \Lambda \pi^{+} \pi^{+} \pi^{-}$  $\mathcal{M}^a = t_{K^- n \to \pi^- \Lambda} \qquad T = [1 - VG]^{-1} V,$  $\checkmark \mathcal{M}^b = t_{\bar{K}^0 p \to \pi^+ \Lambda}$ E. Oset, A. Ramos, NPA 635, 99  $t_T^a = \int \frac{d^3q}{(2\pi)^3} \frac{2M_p}{8\omega_p \omega_{K^{*-}} \omega_{\bar{K}^0}} \frac{1}{k_p^0 - \omega_{K^{*-}} - \omega_{\bar{K}^0} + i\frac{\Gamma_{K^{*-}}}{2}}$ (a)  $\times \frac{1}{P^0 + \omega_n + \omega_{\bar{K}^0} - k_o^0} \left(2 + \frac{\vec{q} \cdot \vec{k}}{|\vec{k}|^2}\right)$  $\times \frac{2P^{0}\omega_{p} + 2k_{a}^{0}\omega_{\bar{K}^{0}} - 2(\omega_{p} + \omega_{\bar{K}^{0}})(\omega_{p} + \omega_{\bar{K}^{0}} + \omega_{K^{*-}})}{P^{0} - \omega_{K^{*-}} - \omega_{p} + i\frac{\Gamma_{K^{*-}}}{2}}$  $K^ \times \frac{1}{P^0 - \omega_n - \omega_{\bar{R}0} - k_{-}^0 + i\varepsilon},$ (19)(b)

# **Evidence of Σ(1430)**

### $\Box\Lambda_c^+\to\Lambda\pi^+\pi^+\pi^-$

 $\Lambda_c$ 

![](_page_32_Figure_3.jpeg)

(a)  

$$\pi^+$$
 $\Sigma(1385)^ \pi^+$ 
(b)

$$T^{\Sigma^{*+}(1385)} = \frac{V_p |p_{\pi^+}|}{M_{\pi^+\Lambda} - M_{\Sigma^{*+}} + i\frac{\Gamma_{\Sigma^{*+}}}{2}},$$

$$T^{\Sigma^{*-}(1385)} = \frac{V_p |p_{\pi^-}|}{M_{\pi^-\Lambda} - M_{\Sigma^{*-}} + i\frac{\Gamma_{\Sigma^{*-}}}{2}},$$

$$\frac{d^{3}\Gamma}{dM_{\pi^{+}\pi^{-}\Lambda}dM_{\pi^{+}\Lambda}dM_{\pi^{-}\Lambda}} = \frac{g^{2}|A|^{2}}{64\pi^{5}}\frac{M_{\Lambda}}{M_{\Lambda_{c}^{+}}}\tilde{p}_{\pi^{+}}\frac{M_{\pi^{+}\Lambda}M_{\pi^{-}\Lambda}}{M_{\pi^{+}\pi^{-}\Lambda}} \\
\left\{ |\vec{k}_{a}|^{2}|t_{T}^{a}\mathcal{M}^{a}|^{2} + |\vec{k}_{b}|^{2}|t_{T}^{b}\mathcal{M}^{b}|^{2} + 2\operatorname{Re}[t_{T}^{a}\mathcal{M}^{a}(t_{T}^{b}\mathcal{M}^{b})^{*}] \\
\times \vec{k}_{a}\cdot\vec{k}_{b} + |T^{\Sigma^{*+}(1385)}|^{2} + |T^{\Sigma^{*-}(1385)}|^{2} \right\},$$
(29)

---

# **Evidence of \Sigma(1430)**

### $\Box \Lambda_{c}^{+} \rightarrow \Lambda \pi^{+} \pi^{-}$ , Lyu-GYW-EW-Xie-Geng, to prepare

![](_page_33_Figure_3.jpeg)

# **Results of** $\Lambda_{c}^{+} \rightarrow \Lambda \pi^{+} \pi^{+} \pi^{-}$

![](_page_34_Figure_2.jpeg)

Cusp signal of  $\Sigma(1/2^{-})$  around  $\overline{K}N$  threshold!

# Search for $\Sigma^*(1/2^-)$ in other processes

![](_page_35_Figure_2.jpeg)

36

# **Two poles of \Sigma^\*(1/2^-)**

#### PHYSICAL REVIEW LETTERS 130, 071902 (2023)

#### **Cross-Channel Constraints on Resonant Antikaon-Nucleon Scattering**

Jun-Xu Lu<sup>(a)</sup>,<sup>1,2</sup> Li-Sheng Geng<sup>(a)</sup>,<sup>3,2,4,5,\*</sup> Michael Doering<sup>(a)</sup>,<sup>6,7</sup> and Maxim Mai<sup>(a)</sup>,<sup>8,6</sup> <sup>1</sup>School of Space and Environment, Beijing 102206, China <sup>2</sup>School of Physics, Beihang University, Beijing 102206, China

It is interesting to note that in our NNLO fit there exist two I = 1 states around the  $\bar{K}N$  threshold located at (1435, -39) MeV and (1440, -135) MeV on the (--++++) sheet, the order of which corresponds to  $\pi\Lambda, \pi\Sigma, \bar{K}N, \eta\Lambda, \eta\Sigma, K\Xi$  respectively. Both states are well above the  $K^-p$  threshold and appear as cusps on the real axis. In the Fit "NNLO\*" in which the constraints from baryon masses are omitted, the two I = 1 states are located at (1364, -110) MeV and (1432, -18) MeV also on the (--++++) sheet. In this case, the narrower state still shows up as a cusp but the broader one becomes a broad enhancement on the I = 1 amplitude on the real axis. We note that the existence of a  $\Sigma^*(\frac{1}{2}^-)$  state has been predicted in a number of UChPT

### Are there two poles of $\Sigma(1/2^{-})$ ?

### **Summary**

- ► Belle/BESIII measurements of  $\Lambda_c^+ \rightarrow \eta \Lambda \pi / \overline{K}^0 \eta p$  show some hints of the  $\Sigma^*(1/2^-)$ .
- The cusp structure around 1430 MeV in  $\Lambda_c^+ \to \Lambda \pi \pi \pi$  could be associated with the  $\Sigma(1430)$ .
- Some processes could be used to search for  $\Sigma^*(1/2^-)$ , such as  $\chi_{c0} \to \overline{\Sigma}\Sigma\pi, \chi_{c0} \to \overline{\Lambda}\Sigma\pi, \gamma n \to K\Sigma(1/2^-)$ .

### >Charmed hadrons at STCF

![](_page_37_Picture_6.jpeg)

![](_page_37_Figure_7.jpeg)

Thank you very much!