Track fitting using GENFIT at STCF

Zhenna Lu, SYSU 8th July 2024 On behalf of the STCF tracking group

2024超级陶粲装置研讨会, 兰州

Outline

- Introduction to track fitting and GENFIT
- Track Fitting Algorithms
 - Kalman Filter
 - Deterministic Annealing Filter
- Application of GENFIT in OSCAR
- Improvement of low momentum track fitting with GENFIT in OSCAR
- Summary and Next

Introduction to track fitting and GENFIT

- Track fitting
 - estimate properties of tracks at target (reference) position
 - Precise measuring of position, momentum (with magnetic field), charge
 - The classical track fitting process begins with the hits identified within a subset provided by the track finding algorithm

GENFIT – A Generic Track Reconstruction toolkit

- Experiment-independent, modular track-fitting framework
- Open source C++ code
- Larger user community(e.g., BelleII, PANDA, SHiP, AFIS ...)
- Providing some typical track fitting tools, e.g., Kalman Filter, Deterministic Annealing
 Filter

Kalman Filter

- An algorithm to obtain the optimal estimate of a system
 - **Predict step**: initial estimate for current state x_k^{k-1} using state transition model.

$$x_k^{k-1} = F_{k-1}x_{k-1} + w_{k-1}$$

• filter step: Correct predicted state with measurement.

 $K_{k} = P_{k}^{k-1} H_{k}^{T} (V_{k} + H_{k} P_{k}^{k-1} H_{k}^{T})$

$$x_k = x_k^{k-1} + K_k(m_k - H_k x_k^{k-1})$$

• **Smooth step**: processing the hits in reverse order, incorporating the information from subsequent hits into the current hit

Kalman Filter in GENFIT

- The iterative bi-directional Kalman filter is applied
 - Forward fitting: from inner detection module to the outer
 - Backward fitting: the result of the forward fitting is used as the starting value for the fit proceeds in the backwards direction
 - The iterative process continues over measurements until convergence is achieved

Forward fitting

Backward fitting

Kalman Filter in GENFIT

- Smoothing in GENFIT
 - Combine the parameters obtained by forward fit and backward fit
 - Gives more accurate states than either forward or backward updates alone

cyan: forward fitting

red: backward fitting

blue: smoothed track

Deterministic Annealing Filter

- Iterative Kalman filter with **weighting** and **annealing** process
- assignment probabilitie for each measurement
- Can be used to reject outliers or to resolve left/right ambiguities

$\vec{x}^*_{k|n}$ the smoothed track state at layer k

Track reconstruction in the ATLAS experiment : The deterministic annealing filter

A Demonstration of DAF fitting in GENFIT

• reject outliers

iteration 1

old weights	1	1	1	1	1
new	0.08056	0.04667	7.64619	0.06203	0.06203
weights	71	04	e-20	72	72

old	0.08056	0.04667	7.64619e	0.06203	0.06203
weights	71	04	-20	72	72
new	0.59467	0.58552	3.81322e	0.58504	0.59237
weights	1	4	-171	2	1

old weights	0.594671	0.585524	3.81322e- 171	0.585042	0.592371
new weights	0.896426	0.887211	0	0.884235	0.895077

old weights	0.896426	0.887211	0	0.884235	0.895077
new weights	0.999995	0.999991	0	0.999989	0.9999994

iteration 5

old weights	0.999995	0.999991	0	0.999989	0.999994
new weights	1	1	0	1	1

- the maximum change in absolute value of weight $\rightarrow 0 <$ threshold (default 0.001)
- meet the convergence criterion ^{2024超级陶粲装置研讨会, 兰州}

Application of GENFIT in OSCAR

- **GENFIT2** is implemented in **OSCAR**
 - Candidate tracks from Hough tracking algorithm are input to GenFit for track fitting

- Deterministic Annealing Filter(DAF) is used as the default fitting algorithm
- Process with 5 different particle hypotheses
- High performance for high transverse momentum tracks, but there's room for improvement with low momentum tracks

Optimization of low momentum fitting

- At low momenta, particles are significantly affected by material effects
- Make curling trajectory in chamber
- leading to greater energy loss and significant errors in the reconstructed track parameters
 - The hits in the latter half of the loop are subject to severe material effects
 - Consider using the first half loop of hits

Simulated sample : 120MeV, $40 < |\cos\theta| < 90$

- fit tracks with only first half hits / all hits
- 1st half hits are selected using geometric information from MC truth

residual of momentum of the 1st measurement

Improvement of fitting workflow

- After calling GENFIT for fitting, the fitting results of the track for each particle hypothesis will be obtained
- When obtaining the smoothed state of the fitting results of each hit, exceptions may be thrown due to abnormal matrix operation.

Improvement of fitting workflow

- Add protection when getting the fitted state
- Ensure that when an exception is thrown for a particle hypothesis, the fitting results of other hypotheses can be stored .

- GENFIT is introduced to OSCAR as track fitting package following Hough transform
- Considering the capability of the DAF algorithm to exclude oulier/noise hits, DAF is adopted as the track fitting algorithm after Hough track finding
- Some preliminary optimization has been done, especially for low-pt curling track

Next

- Combine track finding to improve the track reconstruction performance, especially for low momentum tracks
- Considering noise hits, more optimization is to be done

BACK UP

2024超级陶粲装置研讨会, 兰州

Hit Selection

- At low momenta, particles are significantly affected by material effects
- particles may get trapped in the detector with multiple loops
- leading to greater energy loss and significant errors in the reconstructed track parameters
 - So consider change the range of hits as the input of fitting algorithm

Deterministic Annealing Filter

- resolve left/right ambiguities
 - when using the DAF algorithm, the weights of measurements need to be initialized.
 - Genfit2 implements a technique to initialize the weights:
 - measurements with larger drift radii are assigned smaller weights, since the wire position is expected to be farther away from the trajectory.
 - In contrast, measurements with smaller drift radii, which are closer to the trajectory, get larger weights.

$$w = \frac{1}{2} (1 - \frac{r_{drift}}{r_{drift,max}})^2$$

w is the given weight, and r_{drift} is the distance of the measurement from trajectory.

• This means that if one has an ambiguous measurement, when the measurements in per detector layer are constructed in the code, one wire position have already been selected.

- isFitConvergedFully_
- isFitConvergedPartially_
- nFailedPoints_

	default value	
isFitConvergedFully_	false	When fitting converge && nFailedPoints==0, set to true
isFitConvergedPartially_	false	Set to true if the fit converges
nFailedPoints_	0	construct plane or extrapolation to plane failed +=1

isFitted=true, Fitting ends

Converged

- isFitted_=false
 - \Rightarrow Kalman could not fit
 - 1 The fitting result for each point cannot be obtained.
 - 2 The smoothed state of the first hit can still be obtained.
- isFitted_=ture

fitting process ended normally, but the obtained fit results deviate significantly, nearly approaching 0. (isFitConvergedFully_&& isFitConvergedPartially_ = false.)

max abs weight change = 0

- weight do not change any more, **converged=true**
- DAF::processTrackWithRep out of loop
 - isFitted==true
 - isFitConvergedFully_= (nFailedPoints_==0 ? true : false)
 - isFitConvergedPartially_== true
- after the loop ends, if the p-value of the forward fit and backward fit == 0
 - isFitConvergedFully_= false
 - isFitConvergedPartially_== false

The reason why the maximum number of iterations has not reached, but not convergence

the maximum number of iterations=9

- 1. isFitConvergedFully_and isFitConvergedPartially_are largely overlapping.
- 2. RecFlag is mostly higher than isFitConvergedFully_&& isFitConvergedPartially_in

most cases.

3. The fitting process has ended, but it may not necessarily have converged.

Multiple particle hypotheses

1. The residual distribution of μ :

Multiple particle hypotheses

2. The residual distribution of π

Mean Residual of Pt vs. MC Initial Momentum