2024年超级陶粲装置研讨会

刘清源 (Belle II background group)

July 09, 2024

<u>qingyuan.liu@hawaii.edu</u>

Belle II MDI and Beam Background

- Introduction
- Recent activities in Belle II MDI group
- Belle II beam background study and simulation
- Collimator optimization
- Summary

Introduction SuperKEKB and Belle II

View History Bookmarks Win	dow Help	a docs.google.com	⊀ ℃
	Google - WORK - CERN - e	Shopping 🗸 Social 🗸 Mobal Japan Meteor Information COVID-19	9 Japan Tracker JST Ninomiya House Bill
Google Slides MDI taskforce meetin _Natochii ☆ ⊡ ⊙ Insert Format Tools Add-ons H	g (11 June 2020) · KEK Docu elp <u>Last edit was seconds ago</u>	b2rc APS2020_NATOCHII_Collimation_	System_Optimiz B2GM_June2020_NATOCHII - Google S
00% 👻 Normal text 👻 Times New	v ▼ 12 ▼ B I U A *	☞ ■ ■ • = = = = = = = = = = = = = =	X
- <≠) - √())× ⁰ - <≠> -			
	1 · · ·] · · · ▼ · · ·] · · · 1 · · · 1	2	
	$L = \frac{\gamma_{\pm}}{2er_e} \left(1 + \frac{\sigma_y^*}{\sigma_x^*} \right)$ $L = \frac{\gamma_{\pm}}{2er_e}$	$\frac{\left(\frac{I_{\pm}\xi_{y\pm}}{\beta_{y}^{*}}\right)\left(\frac{R_{L}}{R_{\xi_{y\pm}}}\right)}{\frac{1}{2}} \cdot \left(1 + \frac{\sigma_{y}^{*}}{\sigma_{x}^{*}}\right) \cdot \left(\frac{I_{\pm}\xi_{y\pm}}{\beta_{y}^{*}}\right) \cdot \left(\frac{I_{\pm}\xi_{y\pm}}{\beta_{y}^{*}}\right)$	$\left(\frac{R_L}{R_{\xi_{y\pm}}}\right)$
HE LE	R: 7 GeV <i>e</i> ⁻ R: 4 GeV <i>e</i> ⁺		$\sigma_{X}^{*} \sim \sigma_{X}^{*}$

Machine detector interface group at SuperKEKB/Belle II

Including beam background group and beam loss monitor group

- Interface among SuperKEKB, Injector and Belle II
- Topics:
 - Sudden beam loss:
 - Added new loss monitors, beam orbit recorders (BORs) and acoustic sensors
 - Collimator&Injection
 - Collimator optimization, injection efficiency, long injection BG duration, ...
 - e^+), to reduce impedance
 - **Beam background**
 - (SEU), real-time BG monitors

• Main upgrade: Non-linear collimator (NLC), marked as D5V1 for the low energy ring (LER,

New shielding, reinforced neutron detectors around devices affected by single event upset

Sudden beam loss (SBL) at SuperKEKB **Highest priority**

- Occurs **suddenly** within 1 turn (10 μ s)
- ase; No precursory phenomena
 - Catastrophic damage: Belle II pixel detector (PXD) was off during physics run to protect its ASICs

2024-06-17 20-31-25 99978

Backgrounds in Belle II

- Single-beam background
 - **Touschek** effect: $\propto \sigma^{-1} E_{\text{beam}}^{-3} I_{\text{bunch}}^2 n_{\text{bunch}}$
 - Countermeasure: horizontal collimators at large β_x or ϵ_x
 - **Beam-gas** effect: $\propto I_{\text{beam}}P$
 - Coulomb scattering and Bremsstrahlung
 - Countermeasure: vacuum scrubbing, vertical collimators at small β_{v}
 - constraints from QCS aperture and Transverse Mode Coupling Ins
- Luminosity background: $\propto \mathscr{L}_{inst.}$
 - Radiative Bhabha, Two photon process
- Synchrotron radiation: $\propto E_{\text{beam}}^4$, back scattered photons are **observed by the**
- Injection background: \propto injection repetition rate, could be at a similar level of
 - Newly injected beam is unstable -> high particle loss for ~ 10 ms
 - Countermeasure: injection trigger veto, injection chain tuning, damping rin

Dedicated background study and heuristic fit

KEKB ArchiverViewer

Dedicated background study and heuristic fit Example: preliminary fit result for diamond BP_FW_215

BP FW 215

Background simulation in Belle II

- **Injection** background: still waiting for input from machine experts
- Luminosity background: using BBBREM/BHWIDE and AAFH in basf2
- With more detailed magnetic field map -> slower than MC production for physics analyses • **Single beam** background (only for storage background)
 - SAD: Strategic Accelerator Design
 - beam particle tracking and simulation of lost particles (e^+ , e^-)
 - Basf2: full Geant4 simulation for far beam line, ± 29 m around the IP
 - Generator interface to create primary particles from SAD output

Using a reference beam condition, then extrapolate the result to any current, bunch number, beam size, ... LER: $I_{\text{LER}} = 1.2 \text{ A}, n_b = 1576, \beta_{y(x)}^* = 1(80) \text{ mm}, \epsilon_x = 4.3 \text{ nm}, \epsilon_y/\epsilon_x = 0.01, \text{ CW}=80\%$

Good understanding of background processes is the key to make reasonable prediction

Background simulation with SAD and basf2 Data-MC ratios have been improved substantially during Run1

• Recap of the Data-MC comparison in Run1:

(a) LER single-beam background.

- decompose background online using templates generated by the MC!
- We are working on the new BG study of the last run period \bullet
 - Unexpected BG development
 - Inefficient MC production

(b) HER single-beam background.

(c) Luminosity background.

• Confirms our good understanding of beam loss processes in SuperKEKB -> ECL-based BG monitor to

Real-time BG monitors BGNET

- BGNET (neural network + heuristic sensitivities) uses EPICS PVs to train a neural network:
 - Decompose backgrounds online -> not ready for now
 - Provide which beam parameter contributes most to background change via feature attribution

Y. Buch (Göttingen Univ.)

Real-time BG monitors

ECL-based BG monitor

- ECL-based BG monitor uses MC templates to fit ECL trigger rates with injection veto:
 - Running since beginning of Run2, using templates from Dec. 2021
 - Already helped collimator experts to tune apertures
 - Know issues:
 - Fluctuation due to low stat.
 - HER BG is not decomposed correctly, probably due to the low rate of this component

Screenshots of the monitor panel

Detected some pressure spikes with beam-gas sensitivity

Collimator optimization In practice

- Collimators are optimized regularly
 - better injection efficiency
 - lower beam background in Belle II
 - Used as spoiler and absorber (D06H3/H4)
 - to protect machine components like inj. kicker
- LER: 11 collimators

Collimator optimization In practice

- Collimators are optimized regularly
 - better injection efficiency
 - ower beam background in Belle II
 - Used as spoiler and absorber (D06H3/H4)
 - to protect machine components like inj. kicker

2072ollim	ators			
Vertical co	ollimator			
Name	Туре	Tip Material	Cu coating Ti	p Tċp cdititi tion
D01V1	SuperKEKB	Ta (10 mm)	0	0
D12V1, V2	KEKB	Ti (40 mm)	\bigcirc	×
D12V3, V4	KEKB	Ti (40 mm)	0	0
D09V1-V4	КЕКВ	Ti (40 mm)	\bigcirc	\bigcirc
Horizonta	l collimato	or		
Name	Туре	Tip Material	Cu coating	Tip condition
D01H3-H5	SuperKEKB	W (10 mm)	×	0
D12H1, H3	KEKB	Ti (40 mm)	×	\bigcirc
D12H2	KEKB	Ti (40 mm)	0	×
D12H4	КЕКВ	Ti (40 mm)	0	0
09H1-H4	KEKB	Ti (40 mm)	\bigcirc	×
	Vertical co Name D01V1 D12V1, V2 D12V3, V4 D09V1-V4 HOrizOnta Name D01H3-H5 D12H1, H3 D12H2 D12H4 D12H4	Vertical collimatorsNameTypeD01V1SuperKEKBD12V1, V2KEKBD12V3, V4KEKBD09V1-V4KEKBHorizontal collimatoNameTypeD01H3-H5SuperKEKBD12H1, H3KEKBD12H4KEKBD12H4KEKB	Vertical collimatorsNameTypeTip MaterialD01V1SuperKEKBTa (10 mm)D12V1, V2KEKBTi (40 mm)D12V3, V4KEKBTi (40 mm)D09V1-V4KEKBTi (40 mm)Horizontal collimatorNameTypeTip MaterialD01H3-H5SuperKEKBW (10 mm)D12H1, H3KEKBTi (40 mm)D12H2KEKBTi (40 mm)D12H4KEKBTi (40 mm)D12H4KEKBTi (40 mm)D12H4KEKBTi (40 mm)	Vertical collimatorsNameTypeTip MaterialCu coating TiD01V1SuperKEKBTa (10 mm)OD12V1, V2KEKBTi (40 mm)OD12V3, V4KEKBTi (40 mm)OD09V1-V4KEKBTi (40 mm)OHorizontal collimatorNameTypeTip MaterialCu coatingD01H3-H5SuperKEKBW (10 mm)×D12H1, H3KEKBTi (40 mm)×D12H2KEKBTi (40 mm)×D12H4KEKBTi (40 mm)OO9H1-H4KEKBTi (40 mm)O

Collimator optimization Simulation based on SAD

- Optimization in SAD doesn't consider injection efficiency or injection BG
- Procedure:
 - Open all collimators and record tracks for 1000 turns in SAD
 - Scan collimator settings and calculate particle loss rates at IR and at each collimator
 - The optimal setting is determined by requiring the minimum Touschek/Coulomb lifetime

Collimator optimization Simulation based on SAD

- Optimization in SAD doesn't consider injection efficiency or injection BG
- Procedure:
 - Open all collimators and record tracks for 1000 turns in SAD
 - Scan collimator settings and calculate particle loss rates at IR and at each collimator
 - The optimal setting is determined by requiring the minimum Touschek/Coulomb lifetime
 - Estimate final loss rates and lifetime with tip scattering

Optimized setting vs the tuned during operation

- Our optimization shows the potential of a given lattice
- It might be impossible to apply the setting due to constraints of injection efficiency, too high injection background, limit of loss rate at a specific collimator, ...

Ring	Process	IR loss		Lifetime	
		value [MHz]	stat. unc. [MHz]	Value [min]	stat. unc. [min]
Exp.	Coulomb	12.923	0.043	27.795	0.403
	Brems	6.009	0.020	2112.41	2.31
	Touschek	16.419	0.433	17.154	0.034
Opt.	Coulomb	12.25	0.385	50.998	1.785
	Brems	5.800	0.060	2107.20	7.94
	Touschek	5.393	0.843	17.908	0.066

Guideline to KEK collimator group for the lattice during dedicated BG study

Higher lifetime and lower IR loss with the optimal setting

Collimator study

Close collaboration with KEK vacuum group

- Example: Study copper impregnated graphite (CuGr) as head material for D06V1
 - 2.75 g/cm³, can withstand higher current
 - Head length scan with an optimized collimator setting (-> backup slides)

-1 mm used for the default head: 10-mm Titanium

Summary

- Main Belle II MDI activities are introduced
- Achievements and procedure of Belle II background (BG) study
 - Effective BG monitors to decompose different components online
- Collimator optimization and studies with SAD offer guidelines to KEK collimator group and vacuum group.

Optimized setting for the dedicated BG study in April Beam condition, optics and collimators apertures

- $\epsilon_v / \epsilon_x = 0.01$, CW=80%
- Optics: sler_2024-04-16
- Collimator settings:

Vacuum group: D6H3 should be fixed at 10.5

NAME	D1[mm]	D2[mm]	D1[nSigma]	D2[nSigma]	dNu[1/2pi]
IR	-10.5	10.5	-34.54	34.54	0.8791
PMD06H3	-10.50	10.50	-32.50	32.50	0.8165
PMD06H4	-9.20	9.20	-28.48	28.48	0.2983
PMD03H1	-9.80	9.80	-27.75	27.75	0.0293
PMD02H1	-6.00	6.00	-20.03	20.03	0.8521
PMD02H2	-8.90	8.90	-22.46	22.46	0.3332
PMD02H3	-11.80	11.80	-25.25	25.25	0.0668
PMD02H4	-7.10	7.10	-23.94	23.94	0.8237
IR	-13.5	13.5	-73.56	73.56	0.2522
PMD06V1	-3.30	3.30	-61.29	61.29	0.2775
PMD06V2	-2.40	2.40	-80.66	80.66	0.9178
PMD05V1	-6.80	6.80	-514.82	514.82	0.5536
PMD02V1	-1.40	1.40	-61.88	61.88	0.2487

• Beam condition: $I_{LER} = 1.2 \text{ A}$, $n_b = 1576$, $\beta_{v(x)}^* = 1(80) \text{ mm}$, $\epsilon_x = 4.3 \text{ nm}$,

Simulation setup for D06V1 study **Beam condition, optics and collimators apertures**

- $\epsilon_v / \epsilon_x = 0.01$, CW=80%
- Optics: sler 1801 sx1
- Collimator settings:

```
(* SuperLER movable masks *)
maskSet={
  "PMD06H3"->{xy->"X",d1->-0.01350,d2->0.01350},
  "PMD06H4"->{xy->"X",d1->-0.00800,d2->0.00800},
  "PMD03H1"->{xy->"X",d1->-0.00940,d2->0.00940},
  "PMD02H1"->{xy->"X",d1->-0.00600,d2->0.00600}
  "PMD02H2"->{xy->"X",d1->-0.00850,d2->0.00850}
  "PMD02H3"->{xy->"X",d1->-0.01220,d2->0.01220},
  "PMD02H4"->{xy->"X",d1->-0.00670,d2->0.00670}
  "PMD06V1"->{xy->"Y",d1->-0.00330,d2->0.00330},
  "PMD06V2"->{xy->"Y",d1->-0.00220,d2->0.00220},
  "PMD05V1"->{xy->"Y",d1->-0.00760,d2->0.00760},
  "PMD02V1"->{xy->"Y",d1->-0.00142,d2->0.00142},
```


Null[] **};**

• Beam condition: $I_{LER} = 1.2 \text{ A}$, $n_b = 1576$, $\beta_{y(x)}^* = 1(80) \text{ mm}$, $\epsilon_x = 4.3 \text{ nm}$,

D1[mm]	D2[mm]	D1[nSigma]	D2[nSigma]	dNu[1/2pi]	
-10.5	10.5	-34.53	34.53	0.8791	
-13.50	13.50	-41.78	41.78	0.8165	
-8.00	8.00	-24.76	24.76	0.2983	
-9.40	9.40	-26.62	26.62	0.0293	
-6.00	6.00	-20.03	20.03	0.8521	
-8.50	8.50	-21.44	21.44	0.3332	
-12.20	12.20	-26.10	26.10	0.0668	
-6.70	6.70	-22.58	22.58	0.8237	
-13.5	13.5	-73.55	73.55	0.2522	
-3.30	3.30	-61.28	61.28	0.2775	
-2.20	2.20	-73.92	73.92	0.9178	
-7.60	7.60	-575.29	575.29	0.5536	
-1.42	1.42	-62.76	62.76	0.2488	
21	61.66 at SNAP.1				

ECL-based BG monitor

Online background decomposition

- Extract BG components online
 - Fit ECL hit rate PVs of 576 trigger cells (TC)
 - More details in <u>Andrii's slides</u>
 - Using local injection veto \rightarrow **storage** BG
 - PV for each TC: B2_nsm:get:ECLTRG_ETM_BKGMON:TCRateInjV_TCIdXXX
 - MC templates from May 9th, 2020
 - Adjustable parameters:
 - Template files
 - PV integration/update time: 10 s
 - Local veto parameters (only for this monitor)

22

PV: EPICS process variable

Effective pressure

- Cold Cathode Gauge (CCG) for pressure measurement
 - ~300 for each ring with sensitivity > 1×10^{-8} Pa

$$\mathcal{O}_{\text{beam-gas}} = \mathbf{B} \times \mathbf{I} \bar{\mathbf{P}}_{\text{eff}}$$

$$\downarrow \\ \bar{\mathbf{P}}_{\text{eff}} = 3\mathbf{I} (d\bar{\mathbf{P}}/d\mathbf{I})_{\text{CCG}}$$

$$\downarrow \\ 3(\bar{\mathbf{P}}_{\text{CCG}} - \bar{\mathbf{P}}_{0,\text{CC}})$$

$+\bar{P}_{0,CCG} = 3\bar{P}_{CCG} - 2\bar{P}_{0,CCG}$

CG