

2024年超级陶粲装置研讨会

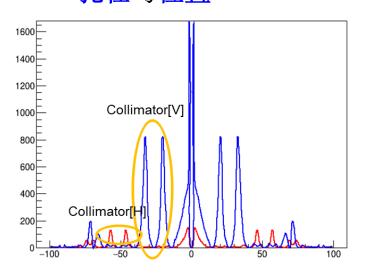
STCF 束流本底模拟

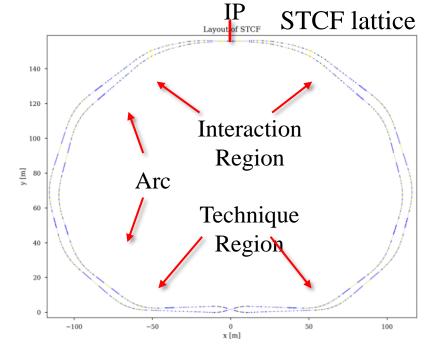
方竹君 裴宇鹏 石煌超 中国科学技术大学

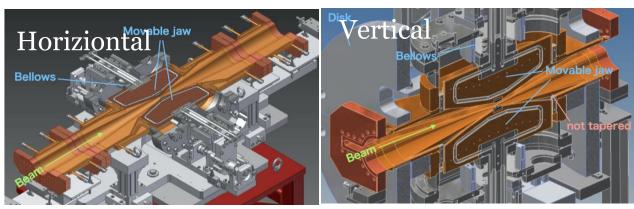
On behalf of the STCF MDI working group

- 一、STCF MDI设计迭代
- 二、基于Oscar的STCF束流本底模拟
- 三、本底水平与性质分析
- 四、小结

- 一、STCF MDI设计迭代
- 二、基于Oscar的STCF束流本底模拟
- 三、本底水平与性质分析
- 四、小结

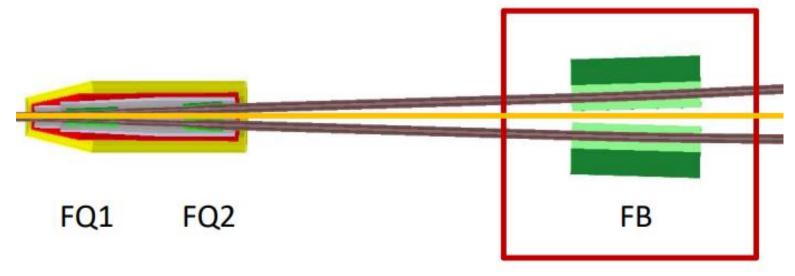

Lattice版本配置


Lattice:


• 616m 周长方案, V7版本

Collimator:

- 两对皆位于束流上游
- 利用Geant4与SAD模拟设计 孔径与位置


对撞区磁铁设置更新

> MDI参数更新

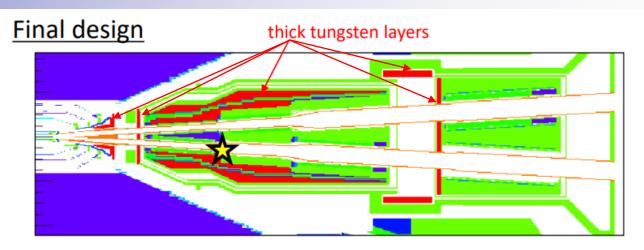
- FQ位置采用最新设计
- 杜瓦Z向长度延长
- 线圈位置、尺寸微调

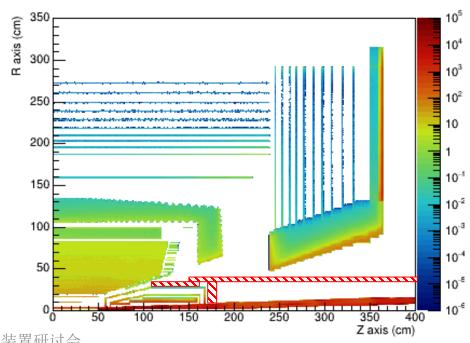
> 增设FB

- 弯曲束流管建模
- 更新東流本底产生子

MDI 额外屏蔽优化模拟

□ BELLEII:


• MDI区域尽可能增设W屏蔽层

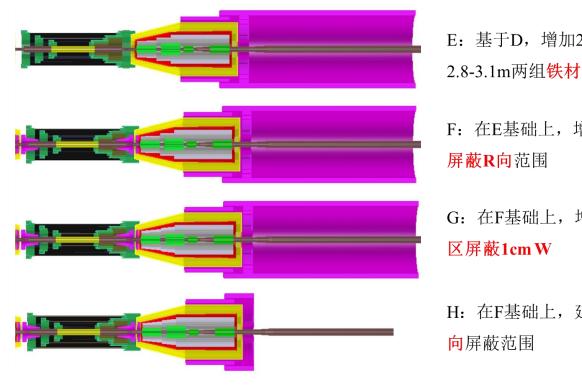

□ Standalone模拟:

• 额外屏蔽降低本底一个量级以上

□ 额外屏蔽:

- · W等重金属屏蔽层,削弱e、γ本底
- (复合)中子屏蔽层,降低中子本底
- 屏蔽效果?
- 空间占用?

MDI 额外屏蔽优化模拟

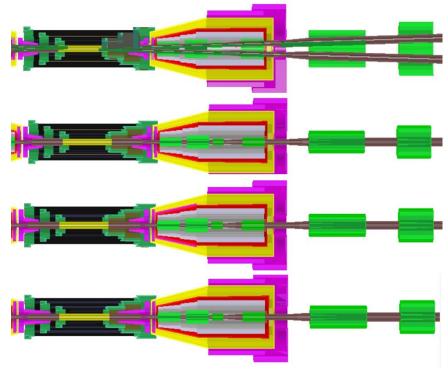

按照standalone模拟和BELLEII的经验,逐步优化MDI额外屏蔽层的参数

A: standalone设计, 但材料改为W

B: 在A基础上,增 加冷却箱内侧屏蔽

C: 在B基础上, 略 增厚磁铁区W屏蔽

D: 在C基础上,削 减最外屏蔽筒长度

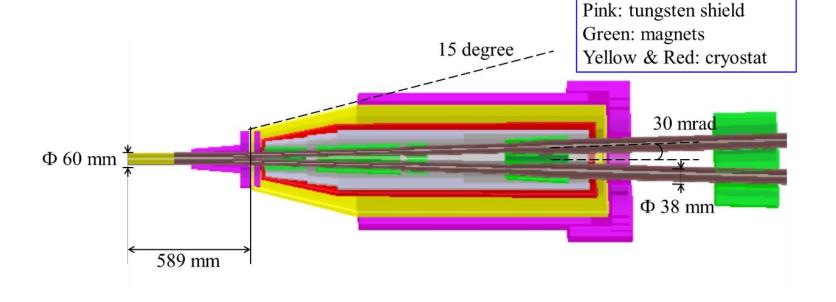

E: 基于D, 增加2-2.5m,

F: 在E基础上,增大尖端 屏蔽R向范围

G: 在F基础上,增加磁铁

区屏蔽1cmW

H: 在F基础上,延长尖端Z 向屏蔽范围



MDI 额外屏蔽优化模拟

Gold & brown: beam pipe

- □ 额外屏蔽层设置:
- ITK区屏蔽(W)
 - 東流管周围的空心锥+双层圆盘
- Endcap区屏蔽(W)
 - 全包围圆柱面及端盖

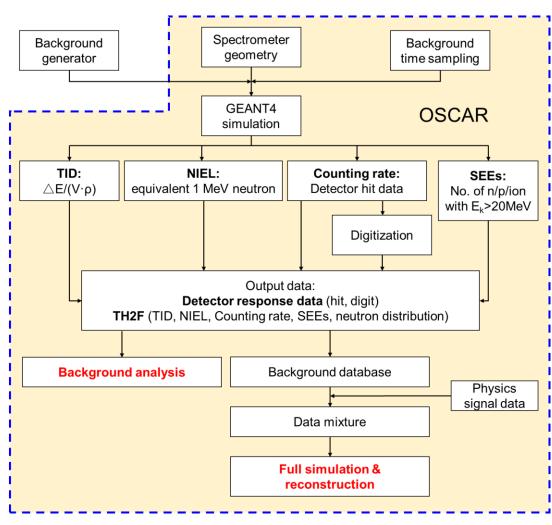
□ 增设屏蔽后本底水平

	With/Without shield
ITKW1	29%
ITKW2	9%
ITKW3	4%
MDC	3%
RICH	4%
DTOF	4%
ECAL-B	2%
ECAL-E	13%
MUD-B-RPC	56%
MUD-B-PS	56%
MUD-E-RPC	66%
MUD-E-PS	122%

- 一、STCF MDI设计迭代
- 二、基于Oscar的STCF束流本底模拟
- 三、本底水平与性质分析
- 四、小结

本底产生子设置

Background type	Generator	Lattice tracking	Detector Full simulation	Particle loss rate (MHz)
RBB	Babayaga/BBBREM	GEANT4		e±:598
$(\theta_{\min} = 4.47 \text{ mrad})$	Davayaga/DDDKEM			γ: 170
Two photon process	DIAG36	GEANT4	OSCAR	1030
Touschek	Sampling	SAD	USCAR	2120
Beam-gas	Sampling	SAD		Coulomb scattering: 2.48
				Bremsstrahlung: 4.22


注: 现在正在进行角度区分分段整合的亮度本底产生子制作


基于Oscar的本底模拟流程

□ 模拟流程图

- □ 主要关注的本底统计量
- TID
- NIEL
- Counting rate
- SEEs
- Neutron spectrum & distribution
- Particle type

□ 本底存储数据结构

Oscar STCF本底模拟结果

□ 探测器本底水平

-				
Detector	TID value	NIEL damage	Total count rate	
	$(Gy \cdot y^{-1})$	(1 MeV neutron·cm ⁻² ·y ⁻¹)	(Hz)	
ITKW-1	260	1.7×10^{10}	3.8×10^{8}	
ITKW-2	25	8.3×10^9	1.1×10^{8}	
ITKW-3	9.0	9.5×10^{9}	7.1×10^{7}	
ITKM-1	4700	3.4×10^{10}	2.0×10^{8}	
ITKM-2	47	7.9×10^9	3.7×10^{7}	
ITKM-3	18	1.1×10^{10}	3.3×10^{7}	
MDC	0.17	3.6×10^{13}	3.3×10^{8}	
PID-Barrel	0.22	0.5 × 100	201/108	
(RICH)	0.33	9.5×10^9	2.0×10^{8}	
PID-Endcap	1.0	1.6×10^{10}	2.9×10^{8}	
(DTOF)	1.0	1.0×10-	2.9 \(\chi\)10°	
ECAL-Barrel	0.36	1.6×10^{10}	6.7×10^{8}	
ECAL-Endcap	0.69	1.7×10^{10}	3.5×10^{8}	
MUD-Barrel-	0.013	1.8×10^{9}	1.0×10^{7}	
RPC	0.013	1.87/10	1.0 × 10	
MUD-Barrel-	0.0036	4.6×10^{10}	6.1×10^{7}	
Scintillator	0.0030	4.07110	0.1 \ 10	
MUD-Endcap-	0.0037	2.8×10^{8}	1.9×10^{6}	
RPC	0.0037	2.0 / 10	1.9/\10	
MUD-Endcap-	0.0023	1.1×10^{10}	7.1×10^{6}	
Scintillator	0.0023	1.1/\10	/.1 / 10	

□ 电子学芯片本底水平

Electronic system	TID value	NIEL damage	SEEs
Electronic system	$(Gy \cdot y^{-1})$	(1 MeV neutron·cm-2·y-1)	$(cm^{-2} \cdot y^{-1})$
ITKW-1	34	5.4×10^9	0
ITKW-2	11	6.3×10^9	0
ITKW-3	5.7	1.0×10^{10}	0
ITKM-1	1200	4.5×10^{10}	0
ITKM-2	28	7.3×10^9	0
ITKM-3	11	1.0×10^{10}	0
MDC	1.3	6.7×10^9	0
PID-Barrel (RICH)	1.7	7.8×10^9	0
PID-Endcap (DTOF)	1.1	1.5×10^9	0
ECAL-Barrel	0.034	8.5×10^{8}	0
ECAL-Endcap	0.1	1.5×10^9	0
MUD	0.2	1.8×10^9	0

□ 整体本底水平略低于CDR数据

TID、NIEL、Counting rate特征分析

- □ TID最高为 4700Gy/y 符合长期工作需求
- TID distribution in RZ plane

 Gy/y

 105

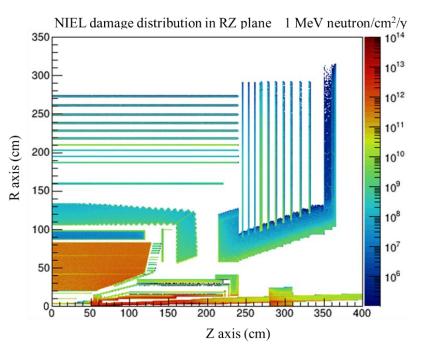
 104

 103

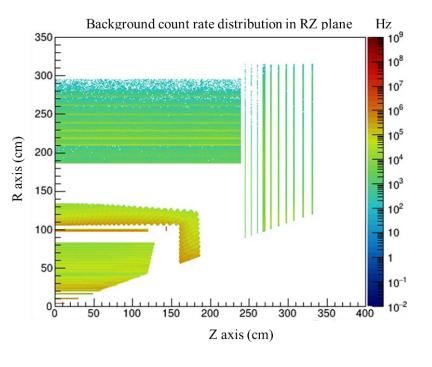
 102

 100

 101

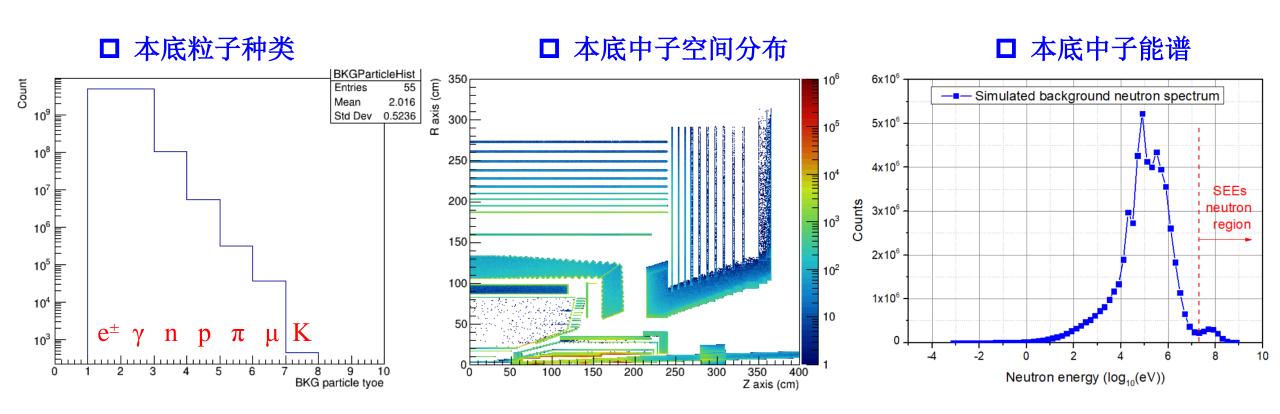

 103

 104


 105

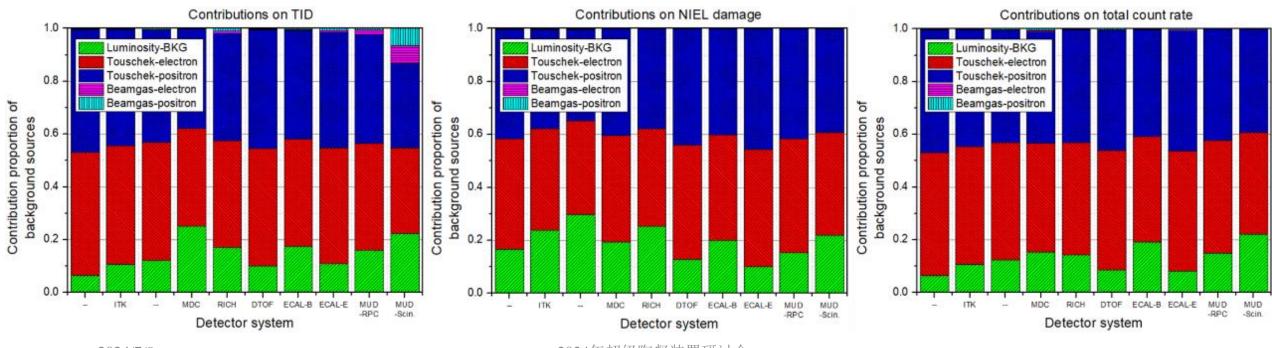
 106

 Z axis (cm)
- NIEL最高~3.6×10¹³ (MDC) 其余低于1e11
- MDC等气体探测器不太关心NIEL



- □ ITK、MDC、ECAL的
- 最高单通道计数率 ~200-100kHz

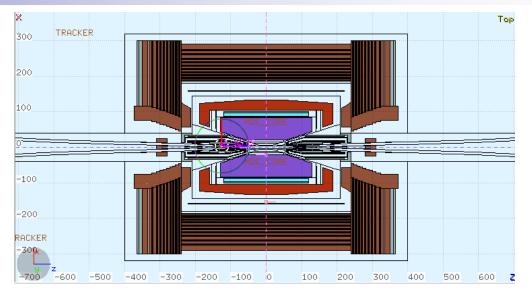
本底粒子特征

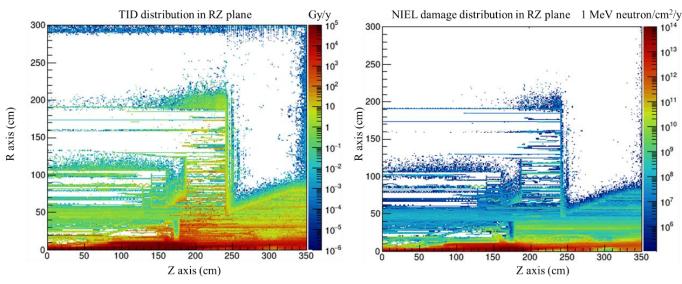


- 一、STCF MDI设计迭代
- 二、基于Oscar的STCF束流本底模拟
- 三、本底水平与性质分析
- 四、小结

本底来源分析

- □ Touschek效应是最主要的本底贡献来源~80%
- □ 亮度本底次之 10%-20%
- □ 暂未观察到明显的正负电子贡献差异(谱仪区域结构对称性很强)
- □ ITKM版本底高于ITKW版本底,尤其是端盖

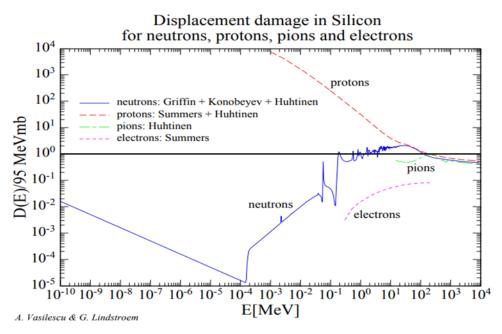


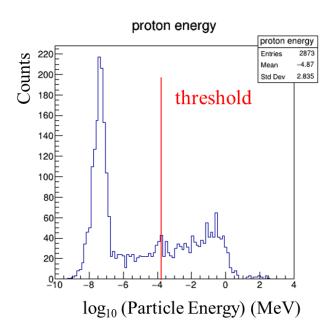


FLUKA cross-check

- □ 利用FLUKA完成另一个独立的本底模拟
 - DOSE
 - SI1MEVNE

- □ TID,与Oscar模拟结果同量级
- NIEL,除了MDC,与Oscar模拟 结果同量级




NIEL模拟统计方法的差异

□ Oscar

- 构建函数f(PDG,E)
- 筛选n, p的特定能量区间
- · 进入敏感体积/在敏感体积内产生的 粒子,函数插值得到NIEL

- · 动能过小,单次碰撞 不会造成Si晶格损伤
- n, p, 动能小于158 eV
 不考虑NIEL贡献

☐ FLUKA

- 采用SI1MEVNE卡
- 所有材料视为Si
- 统计1MeV等效中子 损伤

□ 富H区域的结果 必然有较大差异

2024年超级陶粲装置研讨会

- 一、STCF MDI设计迭代
- 二、基于Oscar的STCF束流本底模拟
- 三、本底水平与性质分析

四、小结

现存问题与下一阶段工作计划

□现存问题

- Lattice大版本更新,需要重做collimator和束流本底产生子
- MDI外边界与谱仪探测器、电子学有些许几何冲突

□计划

- 本底模拟版本需要迭代更新,和lattice研究进度保持同步
- 用Oscar整合的Babayaga、DIAG36制作新的亮度本底产生子
- 与探测器、加速器各系统保持联系,优化结构设计,解决几何冲突

2024/7/9

小结

- 基于V7C3版本底设计MDI额外屏蔽
- 在Oscar上实现完整本底模拟流程,本底水平略低于CDR水平
- 通过FLUKA模拟等方式大致验证Oscar模拟的可靠性
- 下一阶段重点关注产生子更新、几何冲突的解决

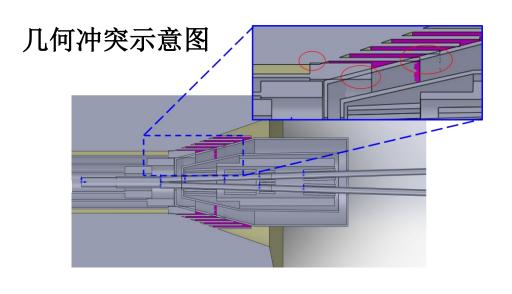
谢谢!

2024/7/9 2024年超级陶粲装置研讨会 2024年超级陶粲装置研讨会 22

MDI设计、模拟相关的现存问题

□ 主要问题:

【交互设计】冷却筒外钢壳的尺寸(几何冲突)


【MDI设计】磁铁设计的大版本确定

【算法】本底产生子的系统性生成

【交互设计】内层探测器本底计数率进一步压低

【MDI设计】2-3m区段的机械空间占用(额外W屏蔽)

【本底】本底安全因子未考虑

BBBrem产生子设置示意图

```
import BBBrem
bbbremalg = task.createAlg("BBBrem")
# e+e-->e+e- gamma;
bbbremalg.property("CMSEnergy").set(4.0)#GeV
bbbremalg.property("MinPhotonEnergy").set(1e-3)#GeV
bbbremalg.property("Weighted").set(True)#Set to true to generate unweighted events
bbbremalg.property("MaxWeight").set(2000.0)#Only required in the case of weighted events.
bbbremalg.property("DensityMode").set(1)
bbbremalg.property("DensityParameter").set(3.89351824e-26)#(hbarc/simga_y)^2
bbbremalg.property("MinAngle").set(0.0)#rad
bbbremalg.property("MaxAngle").set(0.087)#rad
bbbremalg.property("MinEnergy").set(0.0)#GeV
```