

PCIe & ATCA in Trigger and DAQ system

Kai Chen Central China Normal University

STCF Workshop 2024 (Lanzhou)

Outline

PCIe & ATCA

Usage in Trigger and DAQ systems

PCI & PCIe

PCIe Generations

□ CCIX, CXL, NVM Express are based on PCIe physical layer.

□ PCIe Gen6 with CCIX can support bandwidth up to 200 GB/s.

Gen3 has been widely used, Gen4 and Gen5 are being used in the latest R&D.

Advanced Telecommunications Computing Architecture (ATCA)

IPM Controller (IPMC) Shelf-External System Manager Shelf Management Controller (ShMC) AdvancedTCA Board Shelf Manager w/ Dedicated ShMC Other Field Replaceable Unit (FRU) Key Shelf Shelf Power Power Fan Entry Entry Manage Manager Tray Module Module (Backup) (Active) . _ _ _ _ _ _ ----i Implementation Dependent Connection ShMC ShMC **IPMC** 2x Redundant, Bussed or Radial, IPMB-0 IPMC IPMC IPMC **IPMC** IPMC IPMC **IPMC** IPMC ATCA ATCA ATCA ATCA ATCA ATCA ATCA ATCA Board Board Board Board Board Board Board Board 2x Redundant Radial Internet-Protocol-Capable Transport ➡ 张杰: MircoTCA在中微子实验和同步辐射光源探测器中的应用

2001: PICMG began to develop the ATCA standard.

ATCA

- 2003: PICMG officially released the ATCA 3.0 standard.
- 2011: the ATCA 3.1 standard introduced higher bandwidth and stronger processing capabilities, supporting 100G Ethernet.
- 2006: MicroTCA is released as a complementary standard to ATCA, met the needs of miniaturization and low-cost applications.

2024/7/9

ATCA

 \Box Z1/Z2 are for backplane

Z3 is for the Rear Transition Module (RTM)

□ Support multiple PMC, AMC mezanines

> MMC on the mezanine is optional

Redundant power, cooling, and network connections to provide system reliability and availability

□ IPMI management capabilities provide powerful remote monitoring, management, and troubleshooting capabilities

□ High-density, modular, scalable, and flexible

Outline

PCIe & ATCA

Usage in Trigger and DAQ systems

Typical Readout Architecture (Trigger-based)

Usage of ATCA

Readout, Control & DAQ

ITER, SRS, RCE, CMS DAQ

Trigger System

➤ ATLAS

CMS DTH

ATCA-SRS

CMS Serenity

ATCA in ATLAS Run-3 L1Calo

Existing System (Run 2)

K. Chen (CCNU) - STCF Workshop 2024

ATCA in ATLAS Run-4 Trigger

Usage of PCIe

DAQ System

- ≻ LHCb, ALICE, Belle II
- ATLAS, CBM, sPHENIX, ProtoDUNE-SP (NP04), NA62, and probabily ePIC

FELIX in ATLAS DAQ

Are also used in **sPHENIX**@BNL, **CBM**@GSI, **NA62**@CERN, **ProtoDUNE-SP**@CERN

- Router between front-end serial links and the commodity network, which separates data transport from data processing
- Routing of detector control, configuration, calibration, monitoring and event data
- TTC (Timing, Trigger and Control) distribution integrated
- Detector independent
- □ Configurable E-links in GBT mode

E-link: variable-width logical link on top of the GBT protocol; logically separate different stream on a single physical link

FELIX System for ATLAS Run-4

and adjustment.

- **Four** protocols for the optical links with front-end
- □ Special protocol with LTI (Local Trigger Interface)
- **CERN-B** FireFly for connection with detector
- \Box >700 cards

			Second Contractory and Contractory			
IpGBT Inte		erlaken	FULL		GBT	
10 26Ch	1		10 01	0 Ch		t 4 900 Ch
10.26GD		25.78 GD	9.61	8 GD	-	F4.809 GD
2.57 GD		9.618 GD	\$ 9.61	8 GD	-	4.809 GD
ITk Pixel ITk Stri	ips	LAr LASP	LAr LASP TTC	LAr LD	РВ	LAr LDPB TTC
220	76	50	16	201	6	2
	1824 1552	554	280		116 116	→ T 0 → J 30
LAT LATS TICLAT LIL	DB	LUCalo	NSW	NSW T	P	RPC Barrel SL
	620	120 1	2880		4 96	128
30	620	16	1728		96	→ 32
СТР МИСТР	y I	MDT TP	Global GEP	Global	MUX	Tile
	1	64	7	POE	4	16
12	8	1536	1 50		74	<u>↑</u> 288
	2	● ↓ 04	ST 20	94	74	₩ 288
TGC Endcap HGTD		HGTD Lumi	BCM'	LUCID		ZDC
	48	32	2		1	
192	1152	→ 768	12		4	9
ΔFP						
12						
12						

FPGA used in FELIX

PCIe-based System Design @ CCNU

Card	FPGA	Gen	Endpoint × Throughput
MKU060	KU060	Gen3×8	$1 \times 7.48 \text{ GB/s}$
KCU116	KU5P	Gen3×8	$1 \times 7.38 \text{ GB/s}$
PDQ024/5	V1115D	Gen3×8	$2 \times 7.38 \text{ GB/s}$
	KU131	Gen3×16	$1 \times 14.76 \text{ GB/s}$
PDQ124/5	KU15P	Gen4×8	$2 \times 14.76 \text{ GB/s}$
KCU116	KU5P	Gen4×8	1 × 14.76 GB/s
VCU128	VU37P	Gen4×8	2 × 14.76 GB/s
PDQ142	VM1402	Gen4×8	$1 \times 14.76 \text{ GB/s}$

KU15P: Gen3/4 x16; 24 links Optical transceiver (Made in China)

Versal Prime VM1402 Gen4 x8;

Network on Chip

ATCA based System

Versatile Readout system

VAB23 (Blade): start the test in July
VRM24 (RTM): fabrication in July

AMC cards

- LAM24 (Loopback AMC Mezzanine)
- ➤ SAM25 (SAMPA AMC Mezzanine)
- TAM24 (Trigger AMC Mezzanine): fabrication in Aug
- *EAM24 (Emulator AMC Mezzanine)* CAM24 (Converter AMC Mezzanine)

HF Trigger for sPHENIX

- \Box sPHENIX challenge *p*+*p* @ 200GeV:
 - > High p+p collision rate: ~3MHz
 - ➤ Beauty production rate: ~150 Hz (2ub/42mb ~0.005%)
- **Triggered readout rate** is limited to ~15kHz << 3MHz
- □ The extended streaming readout (SRO) of the tracking detectors can further improve the statistics up to 10% of the total luminosity (HF MB rate ~300 kHz)
- For sPHENIX DAQ, streaming readout (SRO) is implemented for MVTX+INTT, so a new online event selection can be added
 - Bottom quark only causes a small fraction of increase (150Hz < 15kHz)</p>

2 active double-layers 47 cm active length/ladder Silicon strip detector

INTT

3 active layers9 ASICs/stave27 cm active length/stavePixel detector

FPGA based FastML

- **GNN-based**
- Algorithms
 - Data decoding Conventional logic
 - Hit clustering Conventional logic
 - Fast tracking Machine learning
 - Topological separation of HF signal from background – Machine learning

Demonstrating with FLX-712

Focus on sPHENIX (& ePIC) Funded by U.S. DOE 22-23; 24-25

Parallel R&D at CCNU

Summary

- Gen3 PCIe based cards have been widely used in a few large-scale experiments.
- Gen4 & Gen5 are the trends for the next generation experiments (LHC & EIC).
- The AdvancedTCA (ATCA) standard is increasingly favored for trigger, data acquisition (DAQ), and readout systems, gradually replacing the older VMEbus architecture.

