

2024年超级陶粲装置研讨会

STCF实验触发系统设计与性能研究

方竹君 封常青 彭亮 王君宸 郝艺迪 包一宁 黄钰贺 杨诚 周子煊 郭兆立 中国科学技术大学 湖南科技大学

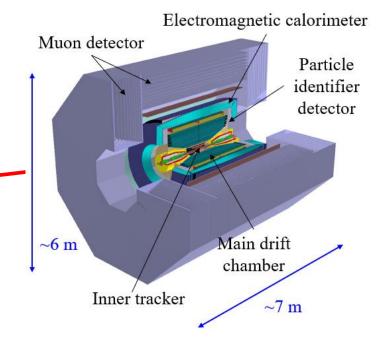
On behalf of the STCF TRIG working group

摘要

- 一、STCF实验概况与触发需求
- 二、触发系统整体设计
- 三、L1层级触发算法研究
- 四、L1层级FPGA硬件平台研究
- 五、HLT研究
- 六、小结

摘要

- 一、STCF实验概况与触发需求
- 二、触发系统整体设计
- 三、L1层级触发算法研究
- 四、L1层级FPGA硬件平台研究
- 五、HLT研究
- 六、小结



STCF 实验概况

□ Super Tau-Charm Facility:

- ➤ 新一代GeV能区高亮度正负电子对撞实验
- ▶ 质心能量 2-7 GeV
- ▶ 峰值亮度 ≥0.5×10³⁵ cm⁻²s⁻¹ at 4 GeV
- ➤ 对撞数据 >1 ab⁻¹/y
- ▶ 未来有提升亮度与电子束流极化的潜力

STCF实验触发系统设计需求

□ STCF探测器面临的挑战:在高事例率、高本底、大动态范围等极端条件下实现全事例物理量的高效率、精确测量

□ STCF实验的预期指标:

- 峰值物理事例率: > 400 kHz
- 峰值原始数据量: > 200 GB/s
- 本底水平: ~ 200 kHz/channel in MDC、ECAL

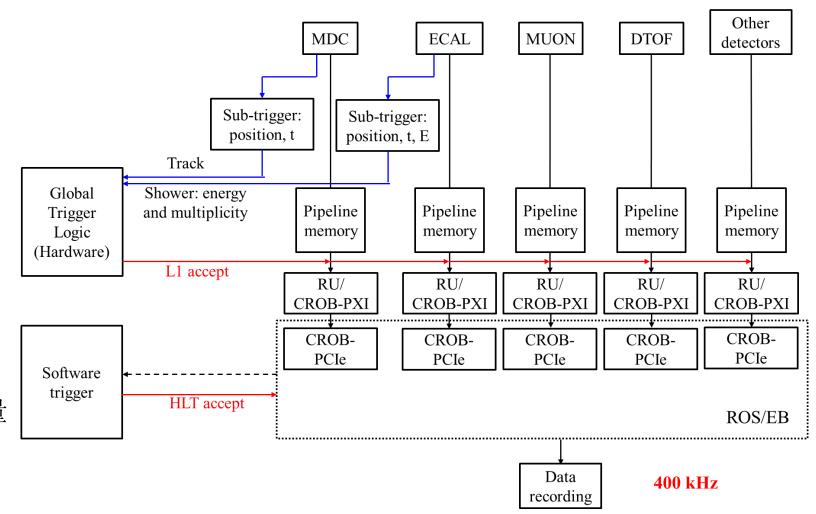
□ STCF实验触发系统的设计需求:

- 最高触发率: ~1 MHz
- 典型物理道触发效率: >99%
- 低延迟: L1层级数μs
- 低本底误触率
- 相邻物理事例区分能力

摘要

- 一、STCF实验概况与触发需求
- 二、触发系统整体设计
- 三、L1层级触发算法研究
- 四、L1层级FPGA硬件平台研究
- 五、HLT研究
- 六、小结

STCF实验触发系统逻辑架构

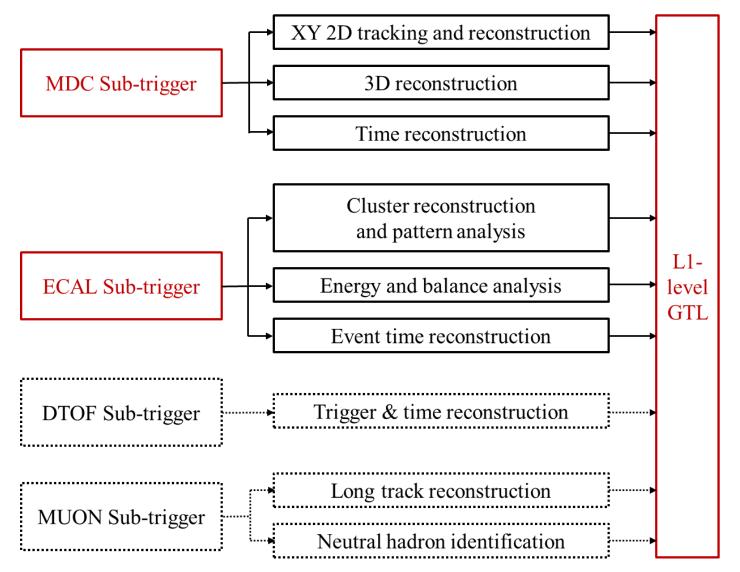

双层级触发架构:

□ L1层级触发:

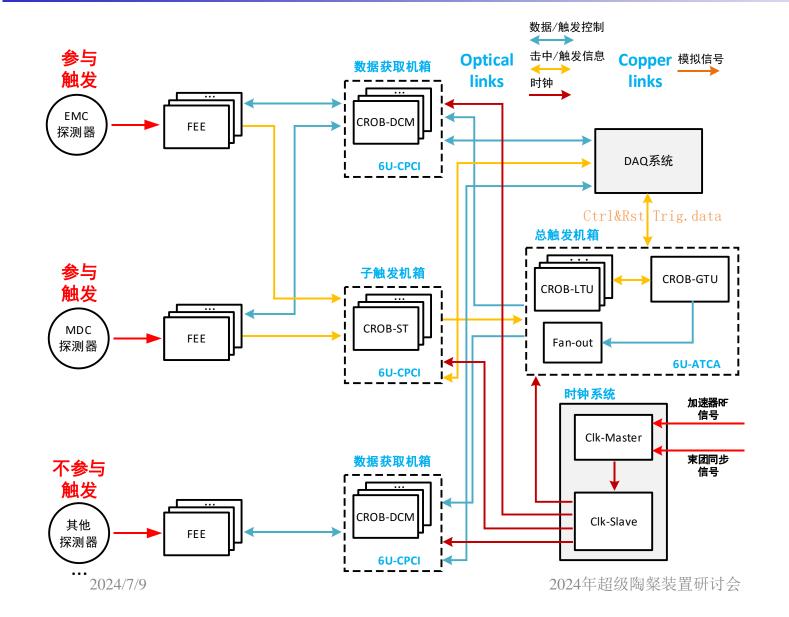
- 基于FPGA硬件平台实现
- 快速、精确、高效识别物理事例

☐ High Level Trigger (HLT):

- 基于异构框架服务器集群实现
- 筛除探测器本底击中,降低数据量



L1层级触发逻辑框架初步设计

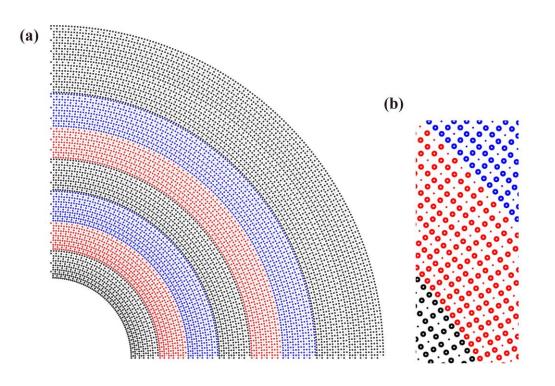

□ STCF谱仪探测器定位梳理

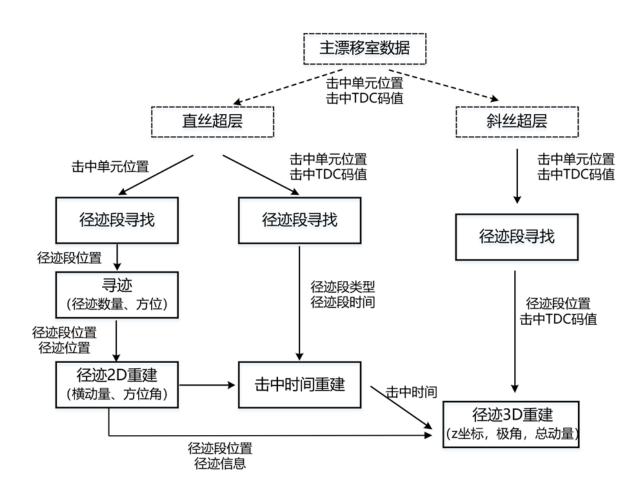
- ITK: 高本底, 在线触发不适用
- ✓ MDC: 核心径迹探测器
- **RICH:** 切伦科夫环重建需要算力, 在线触发不适用
- **DTOF:** 端盖区域精确定时的可能 补充
- ✓ ECAL: 核心能量探测器,在线触 发定时主要来源
- **MUON:** $\mu/\pi/n/K_L$ 触发的可能补充

L1层级触发读出电子学系统架构

- □ DAQ与触发系统分离
- DAQ使用CROB-DCM汇总数 据(搭载在数据获取机箱中)
- 触发系统使用CROB-ST汇总 击中信息并实现触发预处理 (搭载在子触发机箱中)
- □ 硬件触发信号通过<mark>数据获取</mark> 机箱下发至各探测器FEE
- □ CROB-DCM/ST: CPCI机箱
- □ CROB-LTU/GTU: ATCA机箱
- □ 全局时钟频率: 40MHz

摘要

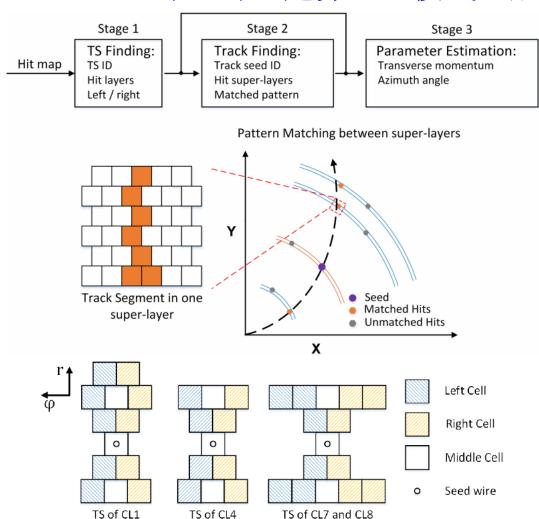

- 一、STCF实验概况与触发需求
- 二、触发系统整体设计
- 三、L1层级触发算法研究
- 四、L1层级FPGA硬件平台研究
- 五、HLT研究
- 六、小结


MDC 子触发算法

□ MDC探测器基准设计:

- 8个超层,每超层6丝层,共48层
- 1,4,7,8 超层为直丝超层

□ MDC 子触发算法逻辑



2024/7/9

MDC 子触发算法

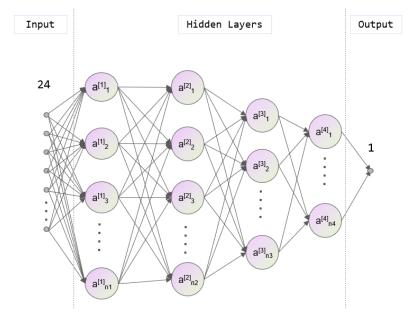
□ XY 2D 寻迹与重建算法(模式匹配)

□ MDC 寻迹效率

- Trigger: $N_{\text{tracking}} \ge 2$, $N_{\text{rec}} \ge 1$
- 实测latency ~ 350 ns

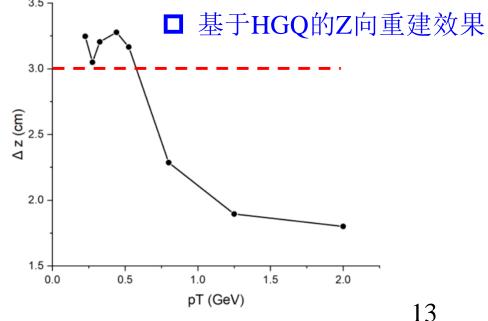
	pipiee	pipimumu	charm_meson	hyperon	tau_pair	bkg
1000	0.933	0.934	0.969	0.932	0.81	0.017
sig in MDC	1000	999	994	993	995	
3/4 tracking	0.942(987)	0.946(986)	0.977(989)	0.966(964)	0.823(983)	
Reconstruction	0.954(968)	0.954(975)	0.979(983)	0.969(956)	0.826(977)	

- ✓ 桶部区域寻迹效率高,重建效果较好
- × 端盖区域寻迹受限,不能重建(仅击中 2个直丝超层)
- ▶ 每超层1个点→多个点
- ▶ 将斜丝超层引入2D寻迹和重建


2024年超级陶粲装置研讨会

MDC 子触发算法

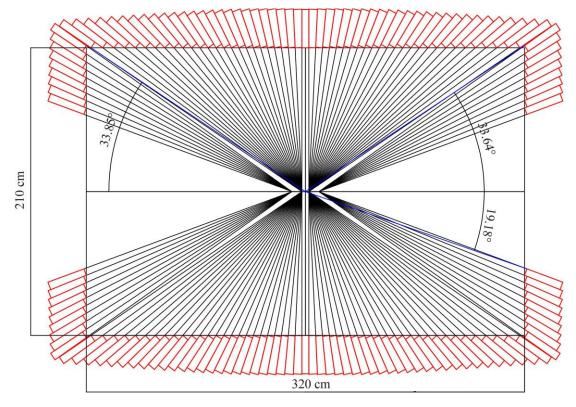
□ Z向重建算法(全连接神经网络)


采用径迹段数量和8个超层的TDC时间作为输入

- □ HLS4ML 在XCKU060的测试结果
- 死时间: 1clk
- 测试latency: < 200 ns

■ 基于HLS、QKERAS的分区间重建结果

三组		qkeras		hls			
动量区间	Mean	SD	d(0)	Mean	SD	d(0)	
200-300	-0.01	2.30	2.30	-0.51	2.41	2.47	
300-450	0.03	2.59	2.59	0.28	2.64	2.66	
450-1500	0.04	1.61	1.61	0.16	1.64	1.65	
一组		qkeras		hls			
动量区间	Mean	SD	d(0)	Mean	SD	d(0)	
200-1500	0.00	2.57	2.57	0.07	2.66	2.66	



ECAL 子触发算法

□ ECAL探测器基准设计:

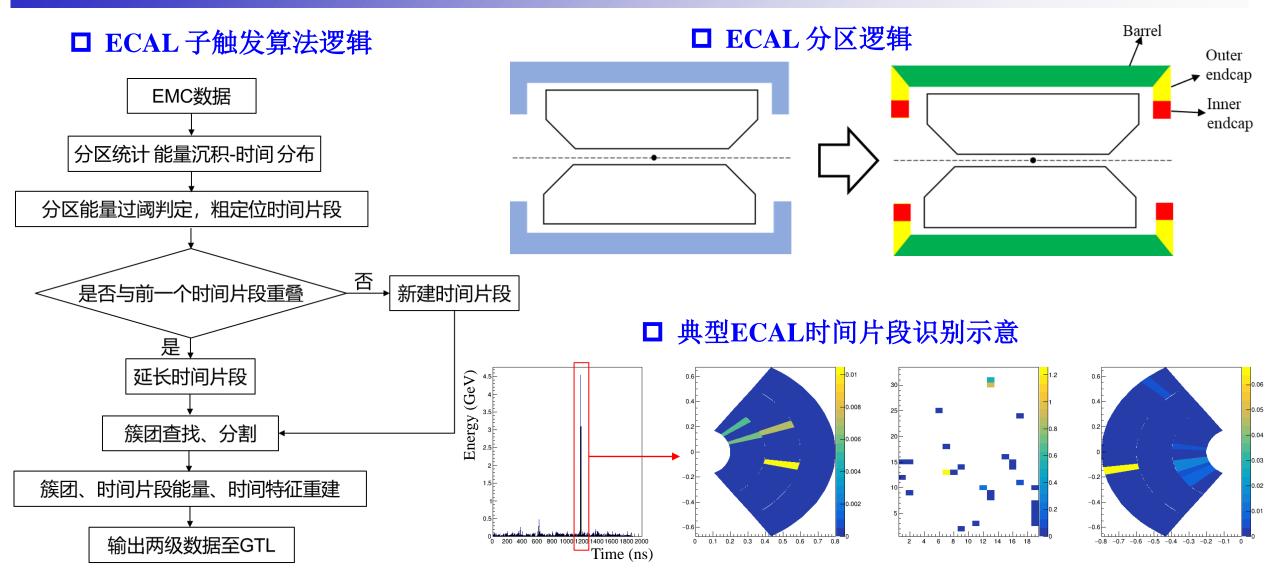
• 桶部: 51 圈pCsI晶体

• 单端盖: 10 圈pCsI晶体

□ 触发单元(Trigger Cell, TC) 分割:

桶部 (4×4 or 3×4):

- 51 圏×132 块
- 429 TC


单端盖(3×5 or 4×5):

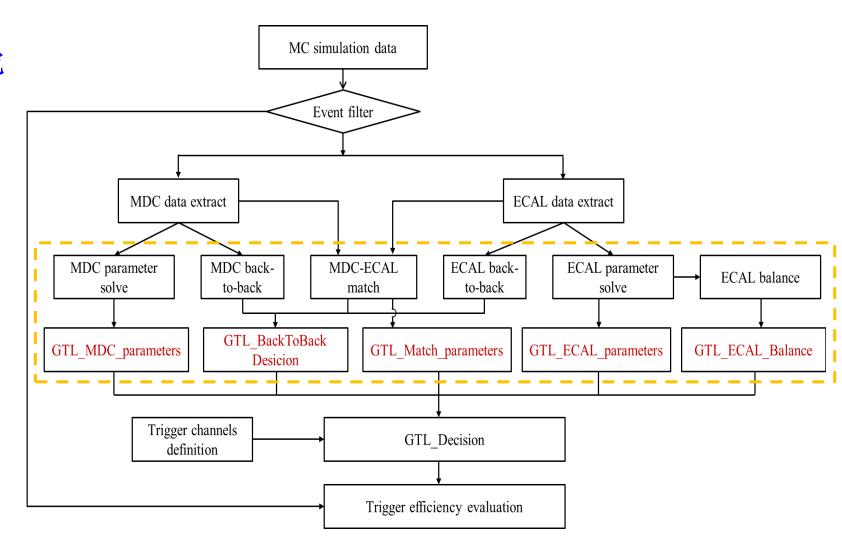
- 10 圏
 - 3 圏× 85 块=> 3×5
 - 3 圈×105 块=> 3×5
 - 4 圈× 130 块=> 4×5
- 64 TC

2024/7/9

ECAL 子触发算法

2024年超级陶粲装置研讨会

15


L1层级全局触发研究

□ L1层级全局触发(GTL)研究

- 逻辑框架设计
- 算法开发
- 触发表设计
- L1层级触发效果评估

□ 现阶段触发表

- 6个带电道
- 1个中性道
- 1个RBB道

GTL 典型触发效果

Physics signal	Number of charged tracks into detector	Number of tracks that should(is) matched	Number of matched tracks in Endcap	Number of matched tracks in Barrel	Number of miss matched tracks	Number of miss matched tracks in Endcap	Number of miss matched tracks in Barrel	Signal trigger rate	Background false trigger rate(kHz)
$e^+e^- \rightarrow \pi^+\pi^-Jpsi$ $Jpsi \rightarrow e^+e^-$	3049	2639(2014)	225(53)	2414(1961)	63	7	56	99.20% (≥3)	
$\begin{array}{l} e^+e^- \rightarrow \pi^+\pi^- J p s i \\ J p s i \rightarrow \mu^+\mu^- \end{array}$	3140	2674(2010)	252(64)	2422(1946)	58	2	56	99.30% (≥ 3)	
$e^+e^- \rightarrow \tau^+ \tau^-$	1668	1668(1380)	164(35)	1504(1345)	28	1	27	99.00 % (≥ 2)	
$e^+e^- \rightarrow \pi^+\pi^-Jpsi$ $Jpsi \rightarrow \Lambda \overline{\Lambda}$ $Jpsi \rightarrow \Xi \overline{\Xi}$	5811	3845(2582)	208(86)	3637(2496)	43	4	39	98.00% (≥3)	43
$e^{+}e^{-} -> D_{0} \overline{D_{0}}$ $e^{+}e^{-} -> D^{+} D^{-}$ $e^{+}e^{-} -> D_{s}^{+} D_{s}^{-}$	4314	4054(2901)	268(56)	3403(2845)	52	10	42	98.80% (≥ 3)	
$\begin{array}{l} e^+e^> D_0\overline{D_0} \\ D_0 -> Klpi^+pi^- \end{array}$	5636	5360(2641)	278(60)	3192(2581)	46	6	40	99.10% (≥ 3)	
J/psi -> gam invisible	2492	1170(861)	105(25)	1065(836)	11	2	9	99.70% (≥2)	

2024/7/9

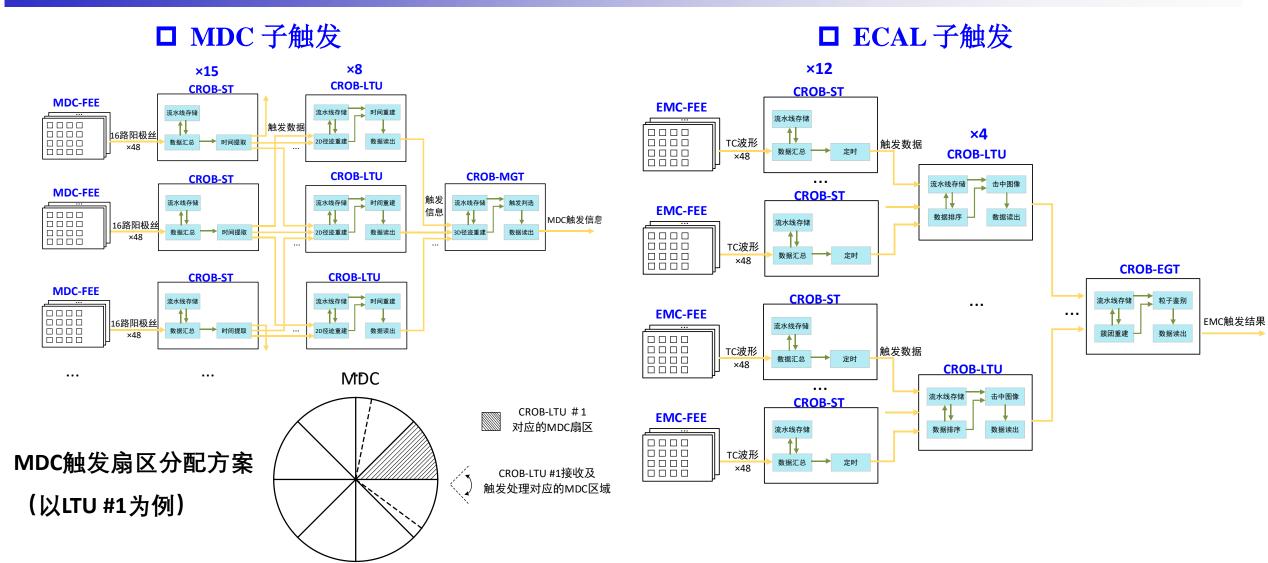
GTL 典型触发效果

Physics signal	Number of charged tracks into detector	Number of tracks that should(is) matched	Number of matched tracks in Endcap	Number of matched tracks in Barrel	Number of miss matched tracks	Number of miss matched tracks in Endcap	Number of miss matched tracks in Barrel	Signal trigger rate	Background false trigger rate(kHz)
e e ->n nbar	-	-	-	-	-	-	-	78.40%	
e ⁺ e ⁻ ->gam n nbar	-	-	-	-	-	-	-	89.10%	43
RBB	750	750	404	346	-	-	-	92.50%	

2024/7/9

摘要

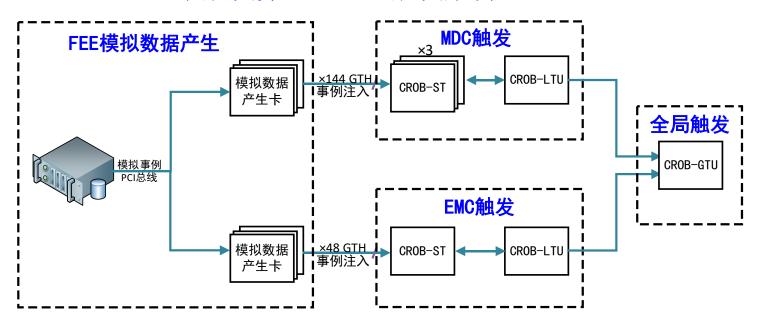
- 一、STCF实验概况与触发需求
- 二、触发系统整体设计
- 三、L1层级触发算法研究


四、L1层级FPGA硬件平台研究

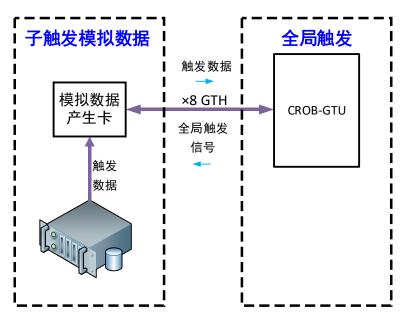
五、HLT研究

六、小结

L1 子触发电子学初步方案



2024/7/9 2024年超级陶粲装置研讨会 2024年超级陶粲装置研讨会



L1层级触发原理样机

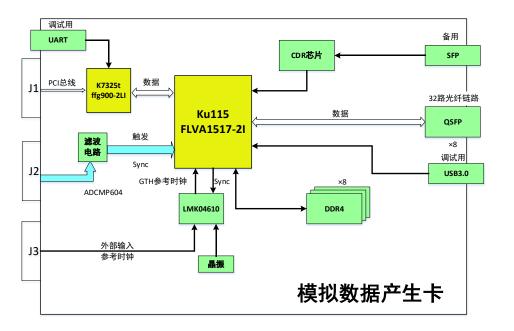
□ 子触发算法验证、触发架构验证

□ 全局触发算法验证

- 原理样机: 1/8 MDC (1/3总面积)、1/4 ECAL,以Oscar模拟数据为输入
- 子触发算法验证:验证ECAL硬件触发算法与MDC硬件触发算法
- 触发架构验证:验证整体架构、信号传输链路可靠性、触发延时等
- 全局触发算法验证:验证全局触发算法

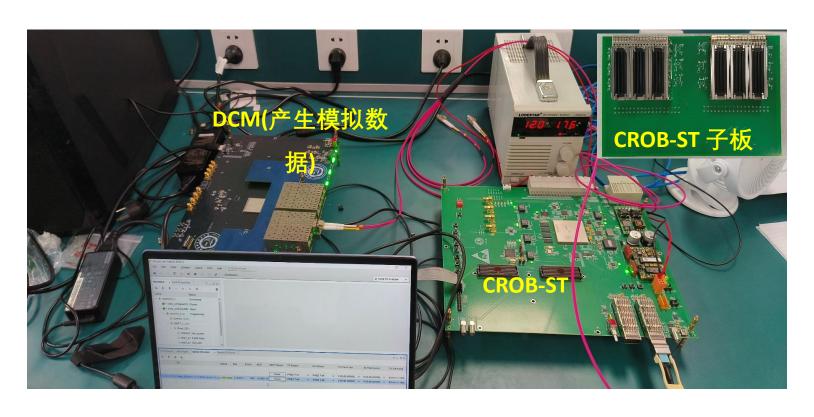
FPGA硬件平台关键板卡设计

☐ CROB-LTU board


- 第一版完成测试
- 第二版正在改板

□ FMCP_ST子板

• 第二版已投版


□ 模拟数据产生卡

- 原理图设计完成
- 正在第一版layout

FPGA硬件平台板卡测试

□ 板卡模块功能测试完成

- 电源测试、FPGA测试、DDR4调试、单片机调试、子板调试通过
- GTH接口调试(发现问题)
- □ 同步进行改版和算法初测
- 测试CROB 板卡运行MDC 子触发 算法的性能
- 使用USB转UART模块进行调试

摘要

- 一、STCF实验概况与触发需求
- 二、触发系统整体设计
- 三、L1层级触发算法研究
- 四、L1层级FPGA硬件平台研究
- 五、HLT研究
- 六、小结

HLT 定位与技术路线

□ High Level Trigger (HLT) 功能定位:

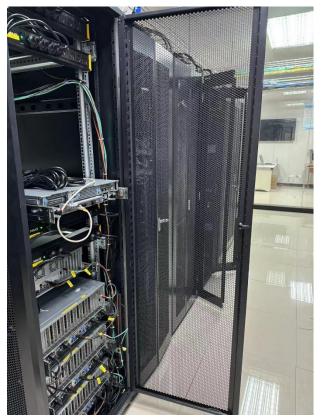
- 基于异构框架服务器集群实现
- 筛除探测器本底击中,降低数据量

- 峰值物理事例率 ~ 400 kHz
- 部分能量点事例率~50 kHz
- L1本底误触率~40 kHz
- ITK、MDC、RICH数据量占比66%, 其中9成以上都是本底

□ HLT研究方向:

- 在L1触发基础上,识别筛除 不含物理对撞的数据片段
- 在L1触发基础上,识别筛除 **数据片段内的本底击中**

□ HLT技术路线:


- (<mark>短期</mark>)不改变数据结构,筛除本底 击中,交由后续offline分析
- (长期) 改变数据结构,在HLT实现 offline 重建的部分功能,将探测器响应提取凝练为高阶信息存储

HLT 服务器硬件平台配置

□ 服务器硬件平台

- 己完成GPU和虚拟机直通和分配
- 已完成公网ip访问配置

- 机器型号: Dell PowerEdge R760xa
- 主要配置:

双 Xeon Gold 652Y6 处理器

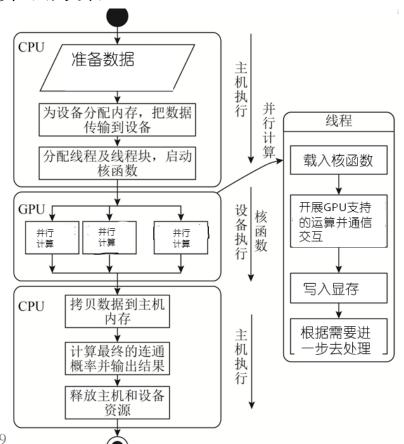
256GB内存

双960GB NVMe SSD (系统盘RAID 1)

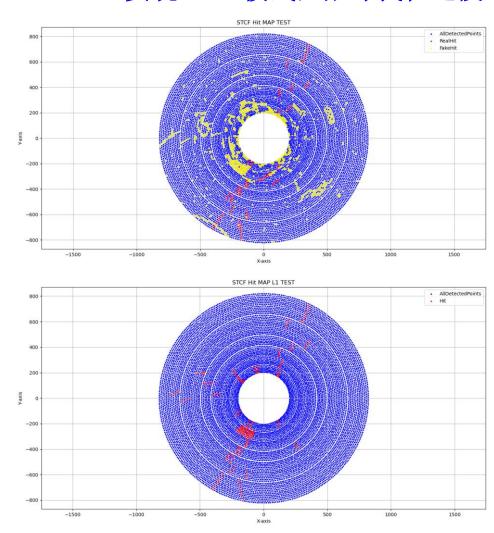
3.84TB NVMe SSD(数据盘)

虚拟机列表

名称	ip 地址	cpu (核心)	内存 (GB)	硬盘 (GB)	gpu (ID)
desktop001	192.168.1.1	32	128	960	65,66,67,68
desktop002	192.168.1.1	16	48	960	e5,e6
desktop003	192.168.1.1	8	24	960	e7
desktop004	192.168.1.1	8	24	960	e8



HLT 算法研究


□ HLT算法执行路线

• 算法方案1: Python (CUPY)

• 算法方案2: CUDA

□ HLT实现MDC模式匹配寻找径迹段

摘要

- 一、STCF实验概况与触发需求
- 二、触发系统整体设计
- 三、L1层级触发算法研究
- 四、L1层级FPGA硬件平台研究
- 五、HLT研究
- 六、小结

现存问题与下一阶段工作计划

□现存问题

- L1-MDC端盖处寻迹效率、重建效率不足
- L1层级对于MDC、ECAL时间信息的利用不足
- 全链条硬件平台性能测试延后
- HLT 算法研究有待加强

□计划

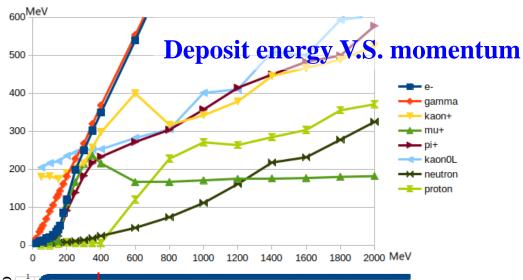
- 将斜丝超层通过模式匹配引入XY 2D重建
- 优化MDC-ECAL时间窗口匹配以及track-cluster匹配,着重考虑定时准确性影响
- 抓紧CROB、FMC改板工期,基于第一阶段模块功能测试,准备全链条测试
- 结合模式匹配与霍夫变换算法,优化HLT的MDC寻迹效果;考虑HLT实现其他 探测器分析算法的研究方案

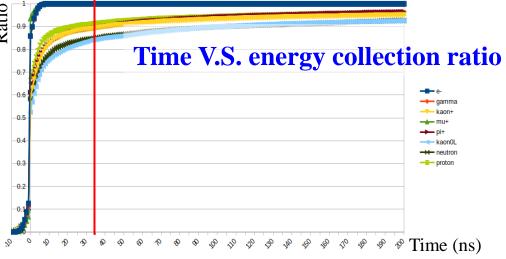
小结

- 初步构建完整的L1层级触发框架和算法,对典型物理道触发率~99%
- 现有版本本底误触~40 kHz
- FPGA硬件平台测试MDC子触发算法延迟~350 ns + 200 ns
- HLT 可基于模式识别实现快速径迹段寻找
- 下一阶段,重点关注L1本底误触率降低、L1层级软硬件联调、HLT 算法优化等方面

致谢

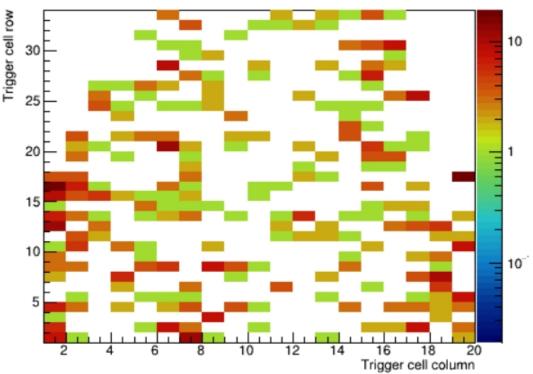
 本研究受到安徽省超级陶粲装置关键技术攻关项目和国家 自然科学基金专项(重点)项目"新一代2-7GeV能区超高亮 度正负电子对撞机触发与数据传输关键技术研究的资助", 特此感谢!


谢谢!


2024/7/9 2024年超级陶粲装置研讨会 32

ECAL sub-trigger R&D

□ Single particle ECAL response:

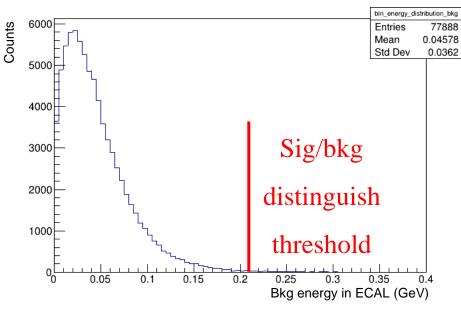


2024/7/9

□ Background level simulation:

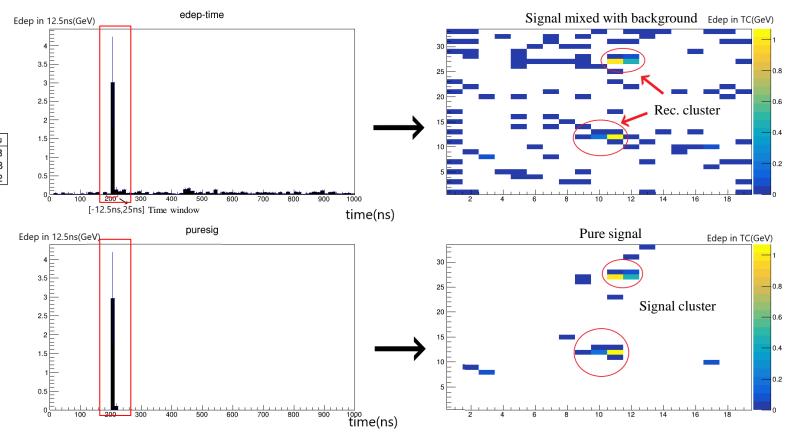
- 1 µs time window for trigger
- 1 MeV TC signal threshold

ECAL background TC response distribution



ECAL sub-trigger R&D

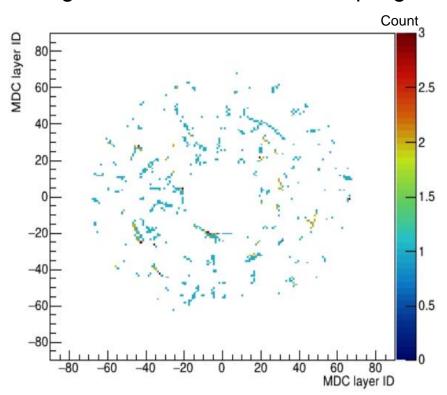
□ Basic parameters setting:

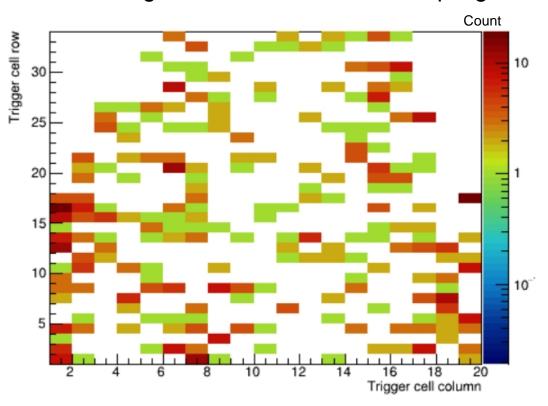

- T-Q map bin width: 12.5 ns
- S/B threshold: 210 MeV
- Cluster energy threshold: 35 MeV

Background energy distribution in each 12.5 ns bin

□ Cluster reconstruction:

- Limit time window by T-Q map
- Find the rec. cluster in TC map

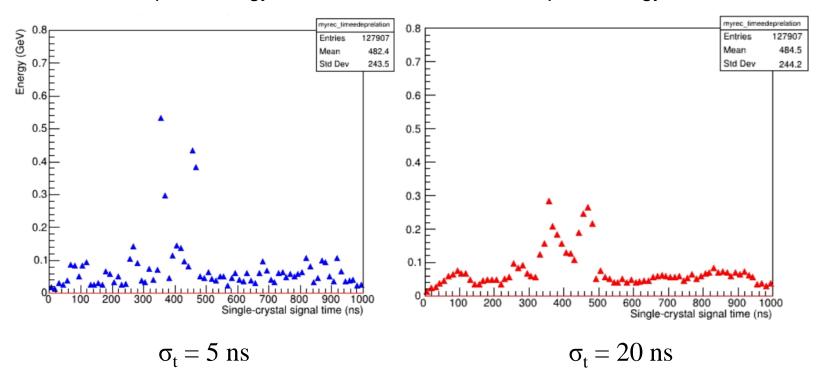



Back up

■ MDC and ECAL background

MDC background distribution in 1 sampling window

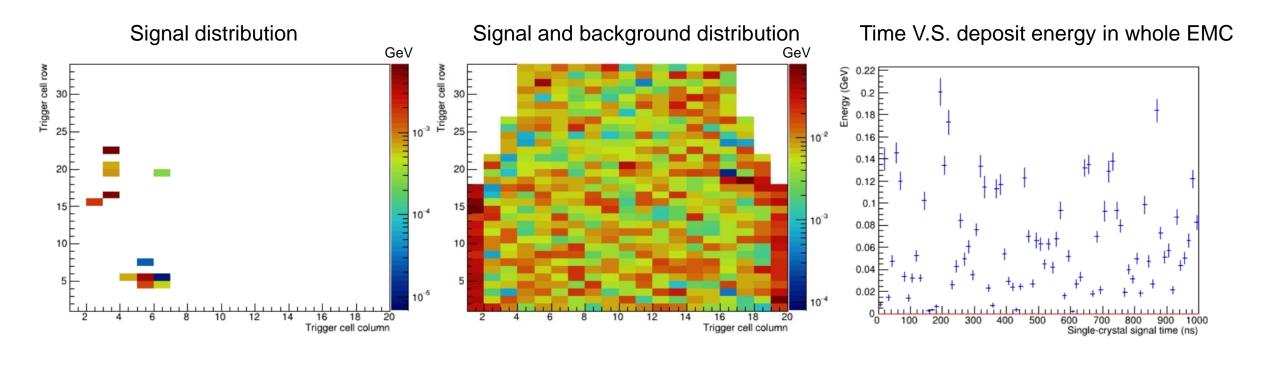
ECAL background distribution in 1 sampling window


2024/7/9 2024年超级陶粲装置研讨会 35

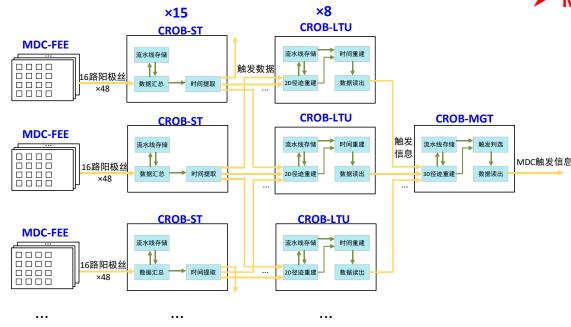
Back up

■ ECAL online time resolution contributions

Time V.S. deposit energy in whole EMC Time V.S. deposit energy in whole EMC

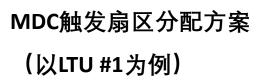


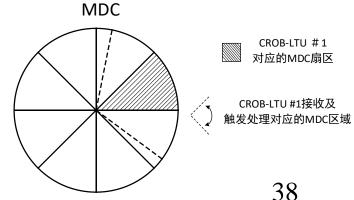
2024/7/9 2024年超级陶粲装置研讨会



Back up

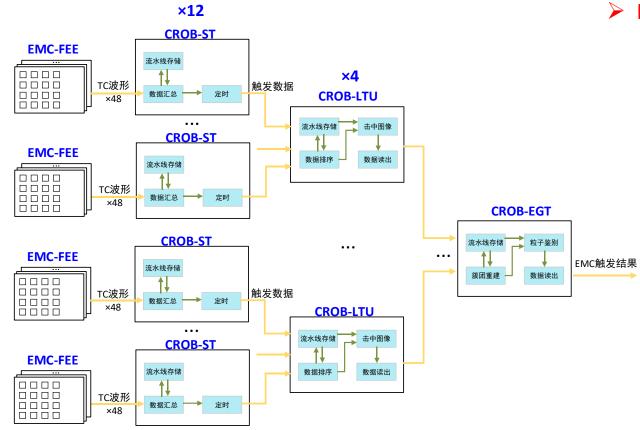
□ ECAL response to low energy deposition event



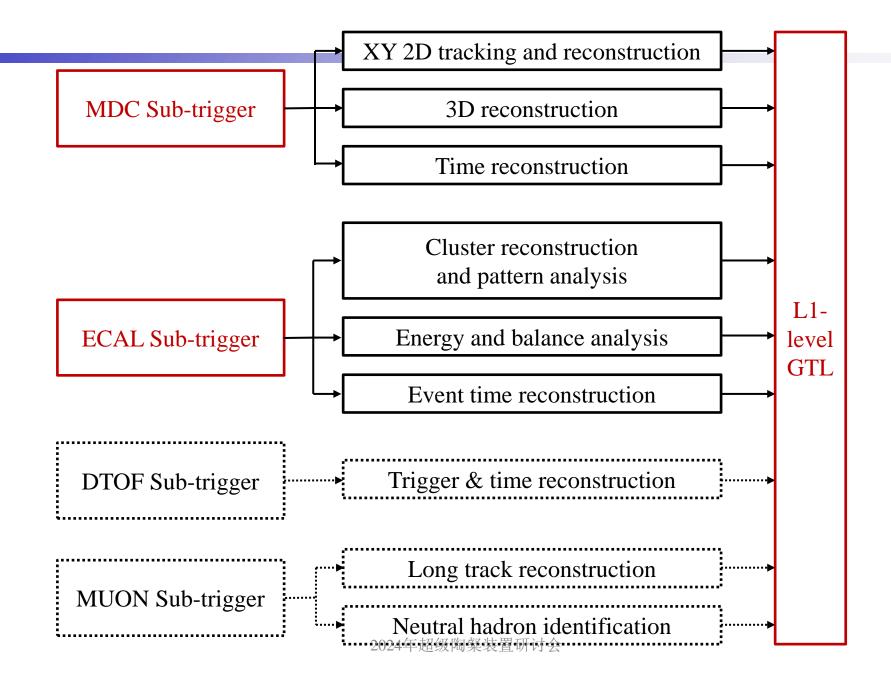

触发电子学板卡数量:

CROB-ST ×15; CROB-LTU ×8; CROB-MGT ×1

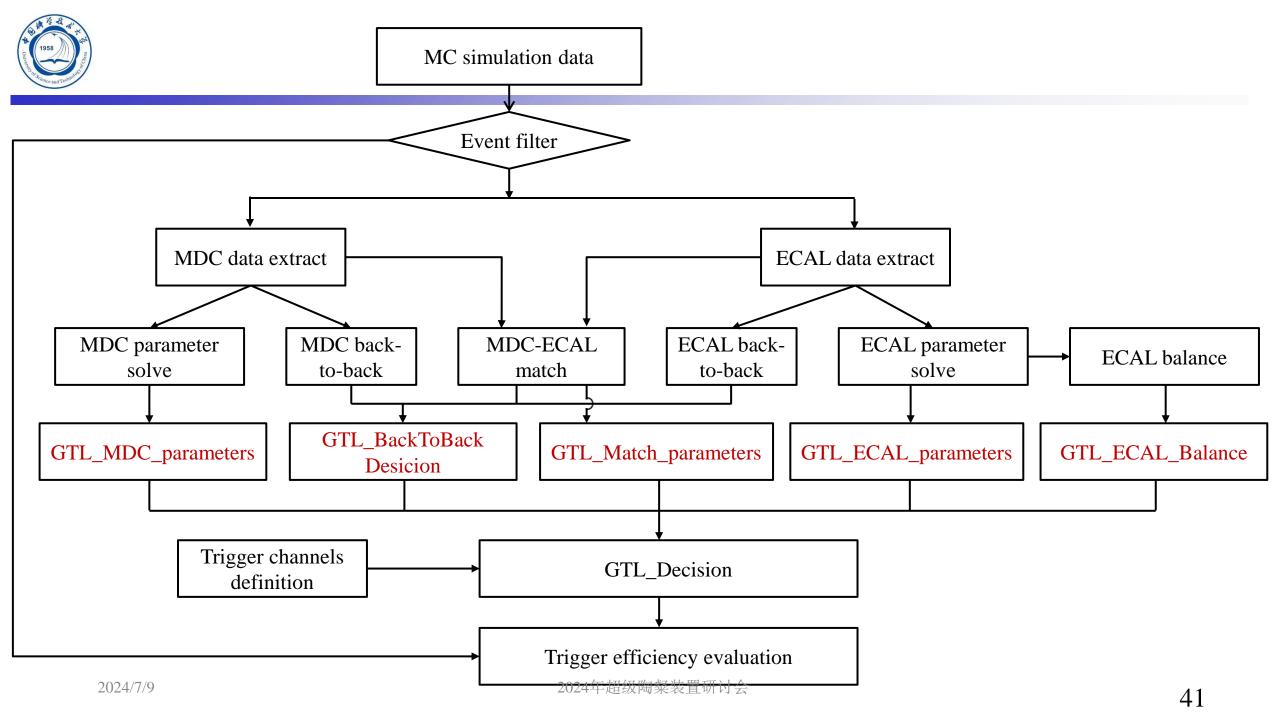
➤ MDC子触发系统:


- □ CROB-ST: 通过光纤链路接收MDC前端电子学的48路击中信号,每路 光纤对应MDC的16根阳极丝,数据率: (16 × **3bit**× 40MHz)×48
 - CROB-ST对48路击中信号进行预处理(零压缩)之后再发送给CROB-LTU
 - 每个CROB-ST的触发数据需要复制3份,发送给3个CROB-LTU,以实现触发处理的Overlap,
- □ CROB-LTU: 每块对应MDC的一个扇区,接收整个MDC 1/3的触发信息(对应4或5个CROB-ST),完成2D径迹重建与击中事例时间重建
- □ CROB-MGT: MDC Global Trigger, 收集整个MDC的子触发结果, 再完成3D径迹重建

2024年超级陶粲装置研讨会


触发电子学板卡数量:

CROB-ST×12; CROB-LTU×4; CROB-EGT×1


➤ EMC子触发系统:

- □ CROB-ST: 通过光纤链路接收EMC前端电子学的48路TC (Trigger Cell) 波形,完成**TC峰值、定时信息获取**
 - 每个TC对应4×4晶体阵列
 - 每路光纤对应1个TC波形(20bit×40MHz)
- □ CROB-LTU:接收最多3块CROB-ST的触发信息,对应 EMC的1/4区域,完成TC数据重排列,提取击中图像 和TC峰值信息
 - 按簇团接收,每个簇团30bit (10bit地址+10bit能量+10bit时间)
- □ CROB-EGT: EMC Global Trigger, 收集整个EMC信息, 包括TC能量和定时信息,以及击中图像,完成**簇团重** 建和粒子鉴别

2024/7/9

GTL 典型触发效果

Physics signal	Number of charged tracks into detector	Number of tracks that should(is) matched	Number of matched tracks in Endcap	Number of matched tracks in Barrel	Number of miss matched tracks	Number of miss matched tracks in Endcap	Number of miss matched tracks in Barrel	Signal trigger rate	Background false trigger rate(kHz) 111 (V2)
$e^+e^- \rightarrow \pi^+\pi^-Jpsi$ $Jpsi \rightarrow e^+e^-$	3534	2684 (2323)	238 (67)	2446 (2256)	210	78	132	99.6% →99.5%(≥3)	128.3
$e^+e^> \pi^+\pi^-Jpsi$ $Jpsi -> \mu^+\mu^-$	3547	2702 (2314)	275 (96)	2427 (2218)	254	102	152	98.7% →99.2%(≥3)	152.6
$e^+e^- \rightarrow \tau^+ \tau^-$	1776	1695 (1462)	169 (44)	1526 (1418)	141	50	91	96.8% → 98.4%(=2)	125.0
$e^+e^- \rightarrow \pi^+\pi^-Jpsi$ $Jpsi \rightarrow \Lambda \overline{\Lambda}$ $Jpsi \rightarrow \Xi \overline{\Xi}$	6189	3363 (2678)	167 (96)	3196 (2582)	356	129	227	99.3%→99.5%(≥5)	158.8
$e^{+}e^{-} -> D_{0} \overline{D_{0}}$ $e^{+}e^{-} -> D^{+} D^{-}$ $e^{+}e^{-} -> D_{s}^{+} D_{s}^{-}$	3837	3465 (2824)	276 (52)	3189 (2772)	262	96	166	99.8% →99.4%(≥3)	133.1
$e^+e^- \rightarrow D_0 \overline{D_0}$ $D_0 \rightarrow Klpi^+pi^-$	3767	3333 (2774)	237 (74)	3096 (2700)	285	164	121	99.0%(≥3)	167.0
J/psi -> gam invisible	1734	876 (1008)	3 (42)	873 (966)	134	42	92	99.8%(≥2)	147.6