

Preliminary consideration of the Elec-TDAQ framework for the CEPC Det. Ref-TDR

Wei Wei

On behalf of the Elec-TDAQ system of the CEPC Ref-TDR team

IHEP, CAS

2024-07-09 STCF Workshop 2024

Motivation & Detector Background

- Vertex (CMOS Sensor)
- Tracker
 - Inner Tracker (ITk): Si Pixel Tracker (HVCMOS)
 - Middle Tracker (MTk) : Pixel TPC / Drift Chamber
 - Outer Tracker(Otk): AC-LGAD TOF / Si
 Strip / Pixel (HVCMOS)

• ECAL & HCAL

- Crystal bar / Stereo crystal / Plastic scintillator / SiW / Glass / RPC …
- Muon
 - Plastic scintillator / RPC
- Electronics
 - Detector front end electronic:FEE
 - ➢ Off detector: BEE
 - Trigger and DAQ: TDAQ

Sub-detector	Key technology	Key Specifications
Silicon vertex detector	Spatial resolution and materials	$\sigma_{r\phi}\sim 3~\mu{\rm m},X/X_0<0.15\%$ (per layer)
Silicon tracker	Large-area silicon detector	$\sigma(\frac{1}{p_T}) \sim 2 \times 10^{-5} \oplus \frac{1 \times 10^{-3}}{p \times \sin^{3/2} \theta} (\text{GeV}^{-1})$
TPC/Drift Chamber	Precise dE/dx (dN/dx) measurement	Relative uncertainty 2%
Time of Flight detector	Large-area silicon timing detector	$\sigma(t)\sim 30 \; \mathrm{p}s$
Electromagnetic	High granularity	EM energy resolution $\sim 3\%/\sqrt{E({\rm GeV})}$
Calorimeter	4D crystal calorimeter	Granularity $\sim 2 \times 2 \times 2 \text{ cm}^3$
Magnet system	Ultra-thin	Magnet field $2 - 3$ T
	High temperature	Material budget $< 1.5 X_0$
	Superconducting magnet	Thickness $< 150 \text{ mm}$
Hadron calorimeter	Scintillating glass	Support PFA jet reconstruction
	Hadron calorimeter	Single hadron $\sigma_E^{had} \sim 40\%/\sqrt{E({\rm GeV})}$
		Jet $\sigma_E^{jet} \sim 30\%/\sqrt{E({\rm GeV})}$

By Wang JC

These specifications continue to be optimized

Elec-TDAQ overall framework

- From the general framework towards the Ref-TDR:
- **1.** To collect the detailed requirements from all sub-dets
- 2. To define the preliminary readout frame & strategy of Elec-TDAQ

Renew of the detector key requirements

	Vertex	Pix Tracker	TOF	Si Strip	ТРС	DC	CAL
Detector for readout	CMOS Sensor	HVCMOS	Strip-LGAD	Si Strip	Pixel PAD	Drift Chamber	SiPM
Main Func for FEE	X+Y	XY + nsT	X + 50psT	Х	E + nsT	Analog Samp.	E + 400psT
Channels per chip	500k Pixelized	50k Pixelized	128	128	128	-	16
Ref. Signal processing	XY addr + BX ID	XY addr + timing	ADC + TDC / TOT+TOA	Discri.	ADC + BX ID	Ultra fast PA + ADC	TOT + TOA/ ADC + TDC
Main challenge for FEE	 Small pixel size Fast readout Low power 	 Large area Cost effective Low power 	~50ps timingPower		 Low power High density integration 	 Ultra fast PA Ultra fast ADC 	 ~10⁵ dynamic range ~400ps timing Huge channel Low power
Data rate for FEE	1Gbps/chip@ Triggerless Innermost	~30Mbps/chip Innermost	<khz chip<="" td=""><td><khz c<br="">hip</khz></td><td>~70Mbps/mo dule Innermost</td><td>~500Mbp s/module /a sector</td><td><100MHz/modul e</td></khz>	<khz c<br="">hip</khz>	~70Mbps/mo dule Innermost	~500Mbp s/module /a sector	<100MHz/modul e

- We are still working on the data rate between the FEE and the BEE, esp. for the endcaps
- We aim for a data-stream mode (FEE triggerless) for all subsystems.
- We are preparing a review by experts in our field about the electronics and TDAQ. Thanks for the inputs from colleagues working on the detector 5

Proposal of general readout strategy of CEPC Elec

Vertex Detector

Physics driven requirements	Running constraints	Sensor specifications
Material budget0.15% X ₀ /layer r of Inner most layer16 mm	Air cooling> Air cooling> beam-related background> radiation damage	$\begin{array}{rcl} -> & \text{Small pixel } & \text{For }\mu\text{m} \\ -> & \text{Thinning to } & 50 \ \mu\text{m} \\ -> & \text{low power } & 50 \ \text{mW/cm}^2 \\ -> & \text{fast readout } & \text{1 }\mu\text{s} \\ -> & \text{radiation tolerance} \end{array}$
Pef: CEPC Concentual Design Re	port Volume II - Physics & Detector	$\leq 3.4 \text{ Mrad}/\text{ year}$ $\leq 6.2 \times 10^{12} n_{od}/(\text{cm}^2 \text{ year})$

C Conceptual Design Report, volumen ivsics & Delecioi

	R (mm)	z (mm)	Number of ladders	Number of chips	
Layer 1	16	125.0			
Layer 2	18	125.0	10	200	
Layer 3	37	125.0			
Layer 4	39	125.0	22	440	
Layer 5	58	125.0			
Layer 6	60	125.0	32	640	

- A thin pixel detector with a small pixel size
 - Small electrode MAPS
- **Detector channels**
 - 64 double-sided ladders, ~1280 chips \geq
 - ➤ ~ 0.5~1M pixels/chip
- 2D resolution \sim 3µm, with fast readout capability
 - Hit rate ~40MHz/cm² @ W, ~32bit/hit \geq
 - Timestamp with 25ns resolution for Z pole \geq
 - Data rate \geq
 - 205Gbps@Trigger; 5.12Tbps@Triggerless

Overall system

Lower material budget

- Low power & air cooling & lower material mechanics
- Radiation tolerance

Elec scheme - Vertex

From R&D towards the Ref-TDR

- **65nm will be the baseline technology** (smaller pixel = spatial resolution)
- Critical change: needs to propose a full scheme for the stitching technology
 - Challenges: data rate, technology, power...

Inner Tracker – Si Pixel

24/10/2023, CEPC Workshop, Nanjing

- A large area silicon tracker with ~10µm Yiming Li spatial resolution @ r-φ
 - \succ ~70-140m² with ~50µm pixel pitch
 - Should be cost effective (HVCMOS is proposed to be used)

Hit rate and signal measurement

- 10⁻⁴ hit/cm²/event @ Z, ~10bits per hit, ~10ns time resolution
 - 10b time stamp + 7b TOT

Detector channels

- ~60k modules (each with 4 chips)
- 1Gbps data link per module and 10+ Gbps high speed link per structure

Overall system

- 160mW/cm² => 2.6W/module (O(100kW) for all)
- Liquid cooling expected @-20 °C

ATLASPix3 features

- TSI 180nm HV process on 200 Ωcm substrate
- Pixel size $50 \times 150 \ \mu m^2$
- + 132 columns \times 372 rows (20.2 \times 21 mm² chip)
- Each pixel has 7-bit TOT + 10-bit timestamp
- Continuous / triggered readout with 8b10b / 64b66b coding
- Power consumption ~160 mW/cm².

Middle Tracker – Pixel TPC

Parameter	Specification	
Noise	<200e	_
Conversion gain	>15mV/fC	•
Peaking time (defaul)	100ns	
Non lineartity	<1%	
Cross talk	<0.3%	
Dynamic range	>2000	•
Power consumption	<5mW/ch	

- Material budget: <1%X0 including outer field cage</p>
- ➢ GEM+µMEGAS / Pixel TPC

• Hit rate and signal measurement

- Momentum resolution: ~10⁻⁴/GeV/c
- dE/dx resolution: <5%</p>
- Time resolution : ~100ns

Detector channels

- 5k chn/module; 84 module/endplate; 2 endplate =>
 840K channels => should be really low power
- > 6.5K ASIC chip if 128chn/chip

Data rate

- > 48K chn/hit @10⁻⁴/ BX / channel
- 7b chn ID + 9b ADC per hit + 2B per ASIC = 22KB
 / BX = 110Gbps for the overall detector

Overall system

- \succ CO₂ cooling
- Trigger or triggerless

Preliminary readout scheme of Pixel TPC

~258 Module/Endplate

80 particles/BX, 12,000 hit/particle, 32(48)b/hit, @ 40M BX Z pole 1 Module: ~100 Mbps(@ innermost)

Outer Tracker – AC-LGAD TOF

Zhijun Liang

Baseline detector concept in CDR

- Recommended by the Int. Advisory Committee
- Detector concept
 - Area of detector (Barrel : 50 m², Endcap 20 m²)
 - \succ Strip-like sensor (4cm \times 0.1 cm)
- A Timing detector and part of the tracker (SET)
 - Timing resolution: 30-50 ps
 - Spatial resolution: ~ 10 µm

Signal measurement

ATLAS HGTD	CEPC TOF
6.4	~ 70
<mark>mm²</mark> (1.3 mm ×1.3mm)	<mark>∼ cm²</mark> (40m × 0.2mm)
\sim 3.6 $ imes$ 10 ⁶	~ 7×10 ⁶
Bump bonding	Wire bonding at strip
30-50 ps	30-50 ps
~ 300 μm	~ 10 μm
	ATLAS HGTD 6.4 mm ² (1.3 mm × 1.3 mm) ~ 3.6 × 10 ⁶ Bump bonding 30-50 ps

Data rate

- 200kHz event @ 16bit/event (9bTOT + 7bTOA)
- > 100k chips for 70m²
- **Power:** < 2W per chip

24/10/2023, CEPC Workshop, Nanjing

Elec scheme – Silicon Tracker

LGAD readout Chip & Module

- Main challenges:
 - 50ps time resolution after irradiation
 - Power consumption and cooling vs timing
 - Large area vs high precision clock synchronization

140mm x 160mm

ECAL concept – crystal bar

Yong Liu, Shaojing Hou

40bars*26layer=1 unit

Key Parameters	Value/Range	Remarks
MIP light yield	~200 p.e./MIP	~8.9 MeV/MIP in 1 cm BGO
Dynamic range	0.1~10 ³ MIPs	Energy range from ~1 MeV to ~10 GeV
Energy threshold	0.1 MIP	Equivalent to ~1 MeV energy deposition
Timing resolution	~400 ps	Limits from G4 simulation (validation needed)
Crystal non-uniformity	< 1%	After calibration
Temperature stability	Stable at ~0.05 Celsius	Reference of CMS ECAL
Gap tolerance	~100 μm	TBD via module development

Elec scheme – ECAL

Barrel fanout @half barrel 17

HCAL concept – glass scintillator

Specifications for front-end electronics

Parameters	Requirement	Remarks
SiPM readout	Single photon calibration	Inputs to SiPM monitoring and saturation corrections at large signals
Dynamic range	1–10,000 p.e.	Energy deposition up to 100 MIPs
Integration	125 ns* ($\rightarrow \sim 1 \mu s$)	Can/should be optimised: balance of energy resolution and SiPM noise
Timing resolution	$lns^* (\rightarrow \sim 100 ps)$	Can/should be optimised: fast timing would help better PFA performance and better energy resolution

CEPC PS-AHCAL

Elec scheme – HCAL

- Q: PCB thickness 3.2mm; reliability problem for multiple board connection
- Q: heat dissip. proposed to rely on the absorber (issue: the Elec is fully at backside)

Elec scheme – Muon

Common ASIC for SiPM readout

SiPM-ASIC (for ECAL, HCAL, Muon, LumiCal)

- Preliminary FEE ASIC scheme proposed
 - FIFO for multiple pile-up
 - Optimized channel ADC for fast and parallel digitization
- but functionality needs further discussion
 - Dynamic range ~10⁵ an issue
 - Calibration for single pe an issue
 - ~100ps Timing vs power & channels an issue

A summary of FEE data rate

	Vertex	Pix Trk	TOF	Si Strip	ТРС	DC	ECAL	HCAL
Detector for readout	CMOS Sensor	HVCMOS	Strip- LGAD	Si Strip	Pixel PAD	Drift Chamb er	SiPM	SiPM
Main Func for FEE	X+Y	XY + nsT	X + 50psT	Х	E + nsT	Analog Samp.	E + 400psT	E + 400psT
Channels per chip	512*1024 Pixelized	768*128 (2cm*2cm @25um*15 0um)	128	128	128	-	8~16	8~16
Ref. Signal processing	XY addr + BX ID	XY addr + timing	ADC+TD C/TOT+T OA	Hit	ADC + BX ID	Ultra fast PA + ADC	TOT + TOA/ ADC + TDC	TOT + TOA/ ADC + TDC
Data Width /hit	32bit (10b X+ 9b Y + 8b BX + 5b chip ID)	48bit (10b X+7b Y +8b BX + 8b TOT + 8TOA + 5b chip ID)	40~48bit (7b chn ID + 8b BX + 9b TOT + 7b TOA+5b chip ID)	32bit (7b chn ID + 8b BX + 5b chip ID)	48bit (7b chn ID + 8b BX + 11b chip ID + 12b ADC + 10b TOA)	Wave @14bit 1.3Gbp s	48bit(很极限) (8b BX+ 10b ADC + 2b range + 9b TOT + 7b TOA+ 4b chn ID + 8b chip ID)	48bit (8b BX+ 10b ADC + 2b range + 9b TOT + 7b TOA+ 4b chn ID + 8b chip ID)
Data rate / chip	160Mbps/chi p@Trigger Innermost	~30Mbps/c hip Innermost	<khz chi<br="">p</khz>	<khz ch<br="">ip</khz>	~70Mbps/m odu Inmost	~500Mb ps/mod u/sec	<100MHz/mod ule(基线?)	<100MHz/mod ule
Data aggregatio n	10~20:1, @160Mbps	?:1 @1~30Mbp s	1. 10:1 @kbps 2. 10:1 @O(10kb ps)	1. 10:1 @kbps 2. 10:1 @O(10k bps)	1. 279:1 FEE-0 2. 4:1 Module	On FPGA	1. 4~5:1 side brd 2. 7*4 / 14*4 back brd @ O(10Mbps)	< 10:1 (40cm*40cm PCB – 4cm*4cm tile – 16chn ASIC)

Common framework on Data Link

- Propose to develop a GBTx-like platform as the common communication interface for all the sub-det.
- Module height & size are constrained from some key detectors (Vertex & CAL)
- Radiation tolerance comes from the innermost Vertex to be O(Mrad/y)
- R&D showed preliminary feasibilities for the key blocks, detailed protocol to be defined
- Clocking distribution also proposed to base on GBTx-like

A summary of FEE power

	Vertex	Pix Tracker	TOF	Si Strip	TPC	DC	ECAL	HCAL
Detector for readout	CMOS Sensor	HVCMOS	Strip- LGAD	Si Strip	Pixel PAD	Drift Chamber	SiPM	SiPM
Main Func for FEE	X+Y	XY + nsT	X + 50psT	X	E + nsT	Analog Samp.	E + 400psT	E + 400psT
Channels per chip	512*1024 Pixelized	768*128 (2cm*2cm@2 5um*150um)	128	128	128	-	16	16
Voltage@c hip	1.8V@180n m (1.2V@65nm future)	1.2V@55nm (HVCMOS Pixel)	1.2V@55 nm (TDC)	1.2V@13 0nm (电 压统一、 便宜)	1.2V@65 nm	±3.3V商用 →1.2V@G aAs?	1.2V@55nm (TDC)	1.2V@55nm (TDC)
Power@ch ip	<200mW/cm 2 <0.8W/chip	<200mW/cm 2 <0.8W/chip 尚无设计	<40mW/c h <5W/chip	5mW/ch 640mW/c hip	35mW/ch ip	?	20mW/chn 160~320mW /chip	20mW/chn 160~320mW /chip
chips@mo dule	10~20:1	<10:1 尚无设计	10:1	10:1	279:4:1	需FPGA、 ADC供电, 可统一1.2V?	112~280:1 侧板无 DCDC 仅电容	~10:1
Power@m odule	8~16W @1.8V 4.4~8.9A	8~16W @1.8V 4.4~8.9A	50W (???) @1.2V 41.7A	6.4W @1.2V 0.53A	40W @1.2V 33.3A		44.8W @1.2V 37.3A	3.2W @1.2V 2.6A
Other	辐照TID 7.3Mrad/y @ HLumi Z		需进一步 优化			On FPGA	可能SiPM可 共用60V中压 电源	可能SiPM可 共用60V中压 电源

Common framework on Power

- Propose to develop a rad-hard power module series as the common platform for all sub-det
- Module height & size are constrained from some key detectors (Vertex & CAL)

Preliminary consideration on common BEE

	KC705 (XC7K325T- 2FFG900C)	KCU105 (XCKU040- 2FFVA1156E)	VC709 (XC7VX690T- 2FFG1761C)	VCU108 (XCVU095- 2FFVA2104E)	XCKU115
Logic Cells(k)	326	530	693	1,176	1451
DSP Slices	840	1920	3,600	768	5520
Memory(Kbits)	16,020	21,100	52,920	60,800	75,900
Transceivers	16(12.5Gb/s)	20(16.3Gb/s)	80(13.1Gb/s)	32(16.3Gb/s) and 32(30.5Gb/s)	64(16.3Gb/s)
I/O Pins	500	520	1,000	832	832
Cost	2748 (650)	3882(1500)	8094	7770	

- A common station for fibers from FEE
- Providing data buffers till trigger comes
- Possible calculation resource needed for trigger algorithm
- Number of IOs, port rate & the cost are the major concerns

Summary on current framework

- Detectors can almost still keep with "triggerless" feature
 - All FEE raw data go to BEE losslessly
 - Except for the (innermost) Vertex
 - Trigger will almost communicate only with BEE
 - ➤ "Backend trigger" based
 - > Both hardware / software trigger still possible
 - > Still needs special consideration on Vertex (how to generate Fast Trg)
- All FEE module based on a similar framework:
 - ASIC Aggr. Data Link Fiber + DC-DC Pwr Cable
 - Minimized the module interconnection design, maximize the common platform design for BEE + Trigger
 - ➤ A highly compact & scalable system
 - Based on a successful design of GBTx-like chip & rad-hard DC-DC module
 - Size & height of the optical & DC-DC modules still with high challenges
 - **>** Backup plan if failed: back to the cable based architecture

Future Plan towards the Ref-TDR

- Endcap design not ready for most sub-detectors
- MDI & background rate may have a big impact on the • scheme
 - Especially for the innermost layer of endcap
- Some key R&Ds are urged to initiate
 - Rad-hard powering & link
 - Key ASICs which are currently absent (SiPM FEE, Strip LGAD)
- Additional backup and innovative schemes not included in this talk
 - Drift chamber as a backup scheme for the middle track to enhance dN/dx
 - Si Strip as a backup scheme for the outer tracker for low cost, - To evaluate the possibility by using wireless communication Thank You!

Middle tracker backup scheme - Drift Chamber

Mingyi Dong

- A Drift Chamber optimized for PID
 - > better than 2σ K/ π separation for P < 20GeV/c
- Signal measurement
 - dN/dx for cluster counting method

Signal characteristics

Parameters	Value	Parameters	Value
Rising	0.5~1ns	Falling	~tens ns
Pulse width	Hundreds ns	Pulse spacing (overlapping)	few~dozen ns
Amplitude	Dozen~hund red nA	Pulse charge	Ten~dozen fC

Detector channels and data rate

		Higgs	Z		
Trigger-les	SS	256 Gbps	6.4 Tbps		
Trigger	Trigger rate	1 kHz	100 kHz		
	Max #wires/event	25k	10k		
	bandwidth	20 Gbps	800 Gbps		

50 peaks/wire*, 16bit/peak from F.Grancagnolo

FY Guo, CEPC workshop 2021

Preliminary readout scheme of Drift Chamber

High Bandwidth Preamp 100mW/ch -> 2.7kW Analog signal on Cable 2.8mm per co-ax 12 signals + 1 Power 3dB attenuation @ 280MHz ADC @1.3Gsps 12bit RAM to average 12 chn in a sector Read by wave envelope of 1.5 us with waveform-- compatible with calibration requirement (0.5Gbps/12chn)

Specification calculation- from hit density

		Hit density (Hits/c m ² /BX)	Bunch spacin g (ns)	Hit rate (M Hits/cm²)	Hit Pix rate (M Px/cm²)	Hit rate/chip (MHz)	Data rate@trig gerless (Gbps)	Pixel/b unch	FIFO Depth @3us rg latency	Data rate@trigger (Mbps)
CDR	Higgs	2.4	680	3.53	10.59	34.62	1.1	23.5	103.9	105.28
	W	2.3	210	10.95	32.86	107.44	3.4	22.6	322.3	101.248
	Z	0.25	25	10	30	98.1	3.1	2.4	294.3	53.76
TDR	Higgs	0.81	591	1.37	4.11	13.44	0.43	7.96	40.4	0.017
	W	0.81	257	3.16	9.45	30.90	0.98	7.96	92.8	3.6
	Z	0.45	23	19.6	58.7	191.9	5.9	4.4	575	118

- TDR raw hit density: Higgs 0.54, Z 0.3; Safety factor: TDR 1.5, CDR 10;
- Cluster size: 3pixels/hit (@Twjz 180nm, EPI 18~25um)
- Area: 1.28cm*2.56cm=3.27cm² (@pixel size 25um*25um)
- Word length: 32bit/event (@Taichu's scale, 512*1024 array)
- Trigger rate: 20kHz@CDR, 120kHz@Z, 10Hz@Higgs, 2kHz@W TDR
 - Trigger latency: 3us(very likely not enough), Error window: 7 bins
 - FIFO depth: @3us * hit rate/chip
 - Data rate=pixel/bunch*trigger rate*32bit*error window

LGAD as a TOF @ Outer Tracker

