STCF电磁量能器研究进展

张云龙

核探测与核电子学国家重点实验室

中国科学技术大学

On Behalf of STCF Calorimeter Working group

2024年超级陶粲装置研讨会 兰州 2024年7月9日

•下一代高计数率、高精度电磁量能器

- •STCF量能器进展
- •总结

- 高亮度实验是粒子物理发展的一个重要方向
 - 高的物理事例率
 - 极高的本底事例率
 - 事例堆积、辐照剂量
- 这对量能器提出了新的需求与挑战
 - 在极高的(本底)事例率下实现高精度测量
 - MHz?
 - 量能器的抗辐射能力
 - 百 kRad?

晶体量能器

- 晶体量能器能量分辨好、抗辐射性能优
- 是粒子物理实验电磁量能器的重要选择之一
- BESIII 量能器
 - CsI(TI)全吸收型
 - 能区: 20 MeV 2 GeV
 - 能量分辨:优于2.5%@1GeV
 - 位置分辨: 6 mm @ 1 GeV

- BELLE 量能器
 - CsI(TI)全吸收型
 - 能区: <mark>20 MeV 8 GeV</mark>
 - 能量分辨:优于2%@1GeV
 - 位置分辨: 6 mm @ 1 GeV

- Babar 量能器
 - CsI(TI)全吸收型
 - 能区: <mark>15 MeV 8 GeV</mark>
 - 能量分辨: 优于3%@1GeV
 - 角分辨: 4.16 mrad @ 1 GeV

● 下一代晶体量能器

- 要求晶体具有更快的发光
 衰减时间
- 更高的抗辐照能力

Crystal	Pure Csl	LYSO	GSO	YAP	PWO	BaF:Y
Density (g/cm ³)	4.51	7.40	6.71	5.37	8.30	4.89
Melting Point (°C)	621	2050	1950	1872	1123	1280
Radiation Length (cm)	1.86	1.14	1.38	2.70	0.89	2.03
Moliere Radius (cm)	3.57	2.07	2.23	4.50	2.00	3.10
Refractive index	1.95	1.82	1.85	1.95	2.20	1.50
Hygroscopicity	Slight	No	No	No	No	No
Luminescence (nm)	310	402	430	370	425	300
					420	220
Decay time (ns)	30	40	60	30	30	600
	6				10	1.2
Light yield (%)	3.6	85	20	65	0.3	1.7
	1.1				0.1	4.8
Dose rate dependent	No	No	ТВА	ТВА	Yes	No
D(LY)/dT (%/°C)	-1.4	-0.2	-0.4	TBA	-2.5	ТВА
Experiment	KTeV				CMS	
	Mu2e				ALICE	
					PANDA	
单价	0.5	4	-	-	1 (参考)	1.3

- PANDA实验组选择了新型PWO(PWO II)晶体 作为其电磁量能器的灵敏探测单元
 - 相对光产额, 0.6, 比PWO高1.5倍
- PANDA组的一个关键技术攻关: 提高PWO ||

光产额

- 两个大面积APD与PW0 II晶体耦合
- 量能器运行在<mark>-25度</mark>环境下,光产额提高4倍
- 最终实现了约100 pe/MeV水平

PWO II晶体光输出与剂量率存在依赖关系

PANDA有可能需要像CMS实验一样另建一套激光监测系统

Table 2 LO and EWLT loss of PWO samples in equilibrium under different dose rates

	Samples		PWO B-	PWO B-	
			1757	1782	
	Initial LO (p.e./MeV)		12.0	13.2	
	Initial EWLT (%)		70.0	70.1	
LO Loss (%)		2rad/h	2	3	
	LO Loss	8rad/h	8	12	
	(%)	30rad/h	14	17	
		7160rad/h	42	46	
		2 rad/h	0.8	1.1	
EWLT Loss (9	EWLT	8 rad/h	2.0	1.7	
	Loss (%)	30rad/h	3.4	3.7	
		7160rad/h	9.9	10.0	

PWOII晶体光输出与剂量率的关系

CMS激光监测系统

BELLE II实验组

- BELLE II实验组选用了pCsI晶体开展了预研
- pCsI晶体光衰减时间: 6ns (f), 30ns (s)
- 荧光产额: 1.1 (f), 3.6 (s)
- 发光波段在310 nm附近,与常规APD的QE匹配度不好

• <mark>QE~40%@310 nm</mark>

BELLE II实验组

- BELLE II 实验组尝试了一种新型的波长位移材料, NOL-9
- 可以把[~]310 nm的荧光转换到588nm,与APD更好匹配,取得 了很好的效果
- 光产额提高到~100 pe/MeV

晶体的抗辐射性能

- 晶体的抗辐射性能是下一代量能器面临的又一挑战
 - BESIII CsI(TI)量能器运行15年的总剂量约为1-2 kRad
 - 光产额出现了不同程度的下降,大部分在10%以内
 - 下一代高亮度实验有可能达到100 kRad, 光产额下降一半?

pCsl晶体的抗辐射性能

- 对于pCsI晶体,影响抗辐射能力的因素
- 外源性
 - 原材料中的有害金属杂质
 - 原料处理过程中引入的水、氧等
- 内源性
 - 晶体生长过程中,温度梯度、下降速率的波动,会引起晶格畸变,产生点缺陷
- 这些缺陷一方面影响了pCsl晶体自身的抗辐射性, 另一外面缺陷发光,产生了慢成分(~us)

需要更加严格的原料提纯,更加精确的生长工艺控制,以提高pCsl晶体的抗辐射性能

超级陶粲装置(STCF)

Super Tau-Charm Facility

- ◆对称型双环对撞机: 注入器~300米,对撞主环~800米
- ◆ 质心能量: 2-7 GeV,

亮度: $> 0.5 \times 10^{35}$ cm⁻²s⁻¹ @ 4 GeV

- ◆ 具有进一步提升亮度和实现极化束流的潜力
 - > High Event Rate: ~ MHZ background event rate
 - Precise Energy Resolution: < 2.5% @ 1GeV</p>
 - Good Position Resolution: ~ 5 mm @ 1GeV
 - ➢ Good Time Resolution: 300 ps @ 1 GeV

电磁量能器回顾

- 纯碘化铯晶体
 - 晶体数: 8670
- 雪崩光二极管
 - 大面积阵列拼装
- 电荷灵敏方案, 波形采样读出

电磁量能器性能

- •能量分辨率优于2.5%@1GeV
- 位置分辨优于5 mm @ 1 GeV

- 对于大尺寸晶体,晶体的荧光自吸收效应不能忽略
 - ~30%@310nm
 - ~70%@600nm
- 可以把晶体表面喷涂NOL波长位移材料,在荧光光子
 第一次与晶体表面作用时就被转换
 - 模拟结果显示,光产额可以提高近2倍

28cm长pCsl晶体荧光传输效率

喷涂前

pCsl晶体荧光产额

- ▶ 利用喷枪摸索喷涂工艺
- ➢ 把WLS材料喷涂在晶体表面➢ 玻璃、小晶体、大晶体

and stress stress terms torus !

喷涂WLS前

0#型号晶体平均光产额: 108.2 pe/MeV 1#型号晶体平均光产额: 92.4 pe/MeV 2#型号晶体平均光产额: 98.7 pe/MeV

喷涂WLS后

0#型号晶体平均光产额: 302.8 pe/MeV 1#型号晶体平均光产额: 265.7 pe/MeV 2#型号晶体平均光产额: 256.7 pe/MeV

时间性能

• LED测试

• 宇宙线测试

读出电子学

THE REAL PROPERTY AND

• 封装前, 对晶体光产额的抽测, 与年初结果基本一致

- 分别为300 pe/MeV和320 pe/MeV
- 应该是环境温度造成的

- 晶体的封装
 - 晶体表面包裹一层镀铝的mylar膜(Al-Mylar) 进行电磁屏蔽
 - Al-Mylar与前放盒良好接触
 - 封装后的晶体,初步结果显示光产额下降<10%
 - 耦合面部分区域粘接前放盒导致

样机读出电子学集成、测试

- 完成样机初版电子学系统的组装
 - 进行了批量测试

研究进展III—机械结构设计、加工

●样机总体机械设计与加工

- ●台基宽度在正常水平
- ●MIPs信号清晰可见

台基

MIPs谱

束流测试准备

PS: 7.31-8.13

- 下一代高亮度对撞实验, 电磁量能器面临着两大挑战
 - 在极高的计数率下实现高精度测量
 - 量能器的抗辐照性能
- 基于快发光晶体的技术路线,国际上的进展
 - PANDA实验组基于PWO II晶体,在-15度环境下实现了~100 pe/MeV的光产额
 - BELLE II组,基于pCsI晶体,采用新型波长位移材料实现了~100 pe/MeV的光产额
- STCF量能器基于pCsl晶体开展了前期预研
 - 通过晶体表面喷涂WLS材料,实现大于200pe/MeV的光产额
 - 时间分辨在100 MeV时优于0.8 ns
 - 完成了5*5阵列样机的研制,下个月在CERN开展束流测试

- 下一代高亮度对撞实验, 电磁量能器面临着两大挑战
 - 在极高的计数率下实现高精度测量
 - 量能器的抗辐照性能
- 基于快发光晶体的技术路线,国际上的进展
 - PANDA实验组基于PWO II晶体,在-15度环境下实现了~100 pe/MeV的光产额
 - BELLE II组,基于pCsI晶体,采用新型波长位移材料实现了~100 pe/MeV的光产额
- STCF量能器基于pCsl晶体开展了前期预研
 - 通过晶体表面喷涂WLS材料,实现大于200pe/MeV的光产额
 - 时间分辨在100 MeV时优于0.8 ns
 - 完成了5*5阵列样机的研制,下个月在CERN开展束流测试

backup

MIPs

读出电子学

读出电子学

目前进展:

- 电源供电正常
- 通过高速收发接口和SPM进行数据传输测试
- •可以正常下发时钟
- 可以通过网线发送配置命令和读取数据 与上位机的传输速率最快966Mbps

接下来的工作:

- 定义状态信息等数据传输格式
- DAQ联调
- 板上增加差分时钟输入并测试DDR3功能

> 发展了流水线的本底/信号时间、幅度拟合提取算法

