

Belle II KLM的升级研究与CEPC缪子探测器的研发

邹世明

(代表复旦Belle II KLM 课题组)

现代物理研究所, 复旦大学

2024超级陶粲装置研讨会

兰州大学

2024/07/09

Structure of the current KLM detector

• Scintillator shape is flexible, easy to get good spatial resolution:

 $\sigma =$ ^{width}/ $\sqrt{12}$

- Wave length shift (WLS) fiber inside scintillator to collect photons and guide them to SiPM.
- Use SiPM at one end, small size, low cost, low operating voltage, high gain and can work at high magnetic field.

Belle II KLM

Superlayer for good 2-D resolution

- Extruded scintillator: cheap in massive production, but the attenuation length is only several centimeters.
- > WLS: Kuraray Y11(200), a diameter of 1.2 mm.
- SiPM: Hamamatsu MPPC, S10362, 1.3mm × 1.3mm.

CEPC muon system

CEPC : FUTURE LEPTON COLLIDER

- Higgs/W/Z bosons, top, BSM searches, etc.
- Precision jet measurement.

CEPC MUON SYSTEM

- Muon identification.
- Standalone measurements of the muon momenta.
- Improve the identification of muons produced inside jets.
- Improve the jet energy resolution.

SCINTILLATION DETECTOR:

• Low costs

• High efficiency

Parameter	Baseline
$L_b/2$ [m]	4.14
<i>R_{in}</i> [m]	4.40
<i>R_{out}</i> [m]	6.08
L_e [m]	1.72
R_e [m]	0.50
Segmentation in ϕ	12
Number of layers	8
Total thickness of iron ($\lambda = 16.77$ cm)	6.7λ (112 cm) (8/8/12/12/16/16/20/20) cm
Solid angle coverage	$0.98 \times 4\pi$

 Total area [m²]
 Endcap: ~4150

 Total: ~8600

The structure of muon system at CEPC.

Hamamatsu MPPC and NDL SiPMs

MPPC (Multi-Pixel Photon Counter)

S14160/S14161 series

Electrical and optical characteristics (Typ. Ta=25 °C, Vover=2.7 V, unless otherwise noted)

Parameter		Symbol	S14160/S14161 -3050HS-04, -08	S14160/S14161 -4050HS-06	S14160/S14161 -6050HS-04	unit
Spectral response range		λ	270 to 900			nm
Peak sensitivity wavelength		λp	450		nm	
Photon detection efficiency a	at λp*3	PDE	50			%
Breakdown voltage		VBR	38		V	
Recommended operating vol	ltage*4	Vop	VBR + 2.7		V	
Vop variation between Typ.			0.1			N/
channels in one product*5	Max.	1 -	0.3			v
Dark current	Typ.	ID	0.6	1.1	2.5	μA
	Max.		1.8	3.3	7.5	
Crosstalk probability		-	7		%	
Terminal capacitance		Ct	500	900	2000	pF
Gain		M	2.5 × 10 ⁶		-	
Temperature coefficient of recommended reverse voltage	je	ΔTVop	34		mV/°C	

Туре	Type EQR15 11-3030D-S/E EQR15 22-1313D-S/E			
Pitch	15 µm			
Element Number	1×1	2×2		
Active Area	3.0×3.0 mm ²	1.3×1.3 mm ²		
Micro-cell Number	40000	7396		
Breakdown Voltage (VB)	28±0.2 V	28±0.2 V		
Temperature Coefficient for V_{B}	28 mV/°C	28 mV/°C		
Recommended Operation Voltage	V _B +8 V	V _B +8 V		
Peak PDE @420nm	45.4 %	45.7 %		
Gain	4×10 ⁵	4×10 ⁵		
Dark Count Rate (DCR)	2380 kHz	413 kHz		
Terminal Capacitance	50 pF	10 pF		

Wavelength (nm)

Wavelength (nm)

Photoelectron peak test of NDL & MPPC with laser

NDL $(3 \times 3 \text{ mm}^2)$

- ➢ High DCR and cross talk of NDL.
- Development ongoing.

Design of preamplifier

Gain: +20 V/V Bandwidth(-3dB): 400 MHz Baseline noise(RMS): 300uV

> Performance test of preamplifier

SiPM time resolution test

EQR10-11-1010

EQR15-11-6060

200

250

S13360-1350

S14160-6050

Time resolution test setup

Small area: $(1 \times 1 \text{ mm}^2 / 1.3 \times 1.3 \text{ mm}^2)$ Photons > 5 , Time resolution < 50ps Photons > 40 , Time resolution < 25ps

Large area: (6×6 mm²) Photons > 20, Time resolution < 50ps Photons > 70, Time resolution < 25ps

Time resolution varies with the number of photons

N Photon

100

50

150

Test bench

WLS fiber

Dark box

1.5 m scintillation detector

Preamplifier

Light collection of scintillator detector

Wavelength-shifting fiber keeps good photon collection at long distance, and time resolution is 1-2 ns .

2024 J. Inst. 19 P06020

RPC in SJTU and test setup

Photo of the 1m*1m*1.2mm RPC

RPC in SJTU and test setup

Plateau efficiency > 95%

Belle II Upgrade

Subdector	Function	upgrade idea	time scale
PXD	Vertex Detector	2 layer installation	short-term
		new DEPFET	medium-term
SVD	Vertex Detector	thin, double-sided strips, w∕ new frontend	medium-term
PXD+SVD	Vertex Detector	all-pixels: SOI sensors	medium-term
		all-pixels: DMAPS CMOS sensors	medium-term
CDC	Tracking	upgrade front end electronics	short/medium-term
		replace inner part with silicon	medium/long term
		replace with TPC w/ MPGD readout	long-term
TOP	PID, barrel	Replace conventional MCP-PMTs	short-term
		Replace not-life-extended ALD MCP-PMTs	medium-term
		STOPGAP TOF and timing detector	long-term
ARICH	PID, forward	replace HAPD with Silicon PhotoMultipliers	long-term
		replace HAPD with Large Area Picosecond Photodetectors	long-term
ECL	$\gamma, e \text{ ID}$	add pre-shower detector in front of ECL	long-term
		Replace ECL PiN diodes with APDs	long-term
		Replace CsI(TI) with pure CsI crystals	long-term
KLM	K_L, μ ID	replace 13 barrel layers of legacy RPCs with scintillators	medium/long-term
		on-detector upgraded scintillator readout	medium/long-term
		timing upgrade for K-long momentum measurement	medium/long-term
Trigger		firmware improvements	continuos
DAQ		PCIe40 readout upgrade	ongoing
		add 1300-1900 cores to HLT	short/medium-term

Table 1.1: Known short and medium-term Belle II subdetector upgrade plans, starting from the radially innermost. The current Belle II subdetectors are the Silicon Pixel Detector (PXD), Silicon Strip Detector (SVD), Central Drift Chamber (CDC), Time of Propagation Counter (TOP), Aerogel Rich Counter (ARICH), EM Calorimeter (ECL), Barrel and Endcap K-Long Muon Systems (BKLM, EKLM), Trigger and Data aquistion (DAO). DAO includes the high level trigger (HLT).

What can a new KLM do?

- 1. Improve the KL ID. Better identification and better neutrino veto.
- 2. TOF-like to determine the momentum of a neutral hadron directly.
- 3. Contribute to dark sector search?
- 4. Keep the good muon ID.

Snowmass whitepaper: arXiv: 2203.11349 FCDR: arXiv:2406.19421.

The scintillators and SiPMs

Solid scintillator (no WLS fiber)

Multiple SiPMs

S13360-6025PE S14160-6050HS EQR1511-6060D-S

4×SiPM

> Thicker scintillators with longer attenuation lengths and large areas of SiPM can improve photon collection.

Plastic scintillator test using cosmic rays

Time resolution of long strip: GNKD_new(2cm)

Time resolution test for different position(single-ended)

> Less light collection at the far end makes the SNR smaller, resulting in worse time resolution.

TEST Reduce the length of the Trigger (1cm) to reduce the 'x' uncertainty.

Middle position: $\sigma = \sqrt{(80.5^2 - (\frac{90.7}{2})^2)} = 66.5 \, ps$

18

Prototype Test

Prototype test setup

Time Calibration of prototype

DT5742 signal waveform

Prototype Test (Velocity of CR Muon)

- ➢ Good performance of the current design for efficiency.
- The time resolution is less than 1.5 ns for scintillator + WLS + SiPM system.

- \succ A preamplifier with time resolution of 20ps is designed.
- > The combination of series and parallel can improve the time resolution of multiple SiPM arrays.
- > The GNKD plastic scintillator (1.35 m) achieves a time resolution of 65ps.
- > The prototype of scintillator realizes the energy measurement of cosmic ray Muon $(3.1\pm0.4 \text{ GeV}/c^2)$.

THANKS !

back up

The rough estimation of K_L ID may be great than 90%.

 P_{calc} : The reconstructed momentum of K_L . P: The momentum of K_L emitted (1.5 GeV/c).

 P_{calc}/P is supposed to be equal to 1.

Introduction

K-long & Muon Detector upgrades

> Replace remaining RPCs in barrel with scintillator strips.

 \triangleright Re-design electronics layout, high-resolution timing for K_L momentum via time of flight.

The structure of Belle II KLM

Snowmass whitepaper, arXiv: 2203.11349

Efficiency measurement

The efficiency of GNKD_150cm at far end.

The strips with optical glue and Teflon have highest efficiency, keeping upon 98% at threshold of 10 p.e.

K_L & muon detector in Belle

Scintillators of KLM end cap scintillators

- CR testing with two strips
- ➢ High efficiency
- > Time resolution: < 1.5ns

WLS fiber limits the improvement of time resolution

<image>

Scintillator + WLS fiber + SiPM

Keeping high efficiency at 10 p.e. threshold

Time difference of two channel

Time resolution upgrade

Scintillator for detection

Precise measurement of the four-momentum of neutral hadrons

- Uncharged
- Complex hadron shower

Scintillator detector

- High time resolution
- Fast time response components in hadron showers
- Flight velocity: from the collision point to the KLM detector & solid angle and particle identification information

$$p = \gamma mv = \frac{mcL}{\sqrt{t^2c^2 - L^2}} \qquad \text{if } L = 2 \text{ m}, \quad \gamma = 3, \quad p \approx 1.5 \text{ GeV/c}$$
$$\frac{\delta t}{\delta p} = -\frac{m^2L^2}{t \cdot p^3} = -\frac{m^2Lv}{p^3} \qquad \qquad \delta t = 100 \text{ ps} \qquad \text{so } \delta p = 0.19 \text{ GeV/c}$$
$$\text{Relative error} \sim 13\%$$

C. Lippmann – 2003

Time resolution of long strip: GNKD(3cm)

Influencing factors of time resolution

• Coincidence time resolution (CTR)

 $CTR \propto \sqrt{\tau_{d/n_p}}$

- τ_d : scintillation decay time n_p : the number of photons detected
- the contribution of electronic noise on SPTR^[2]:

- Improve the rise time \rightarrow High bandwidth, high swing rate (>350MHz)
- Readout electronics noise reduction \rightarrow Low-noise transistors, filter circuits* (<1mV)

single photon time resolution (SPTR)^[1]

scintillator: 3mm length LSO:Ce,Ca(0.4%) crystal

To improve CTR of scintillator:

- Reduction of electronic noise
- Selection of scintillators --short decay time
- Increase photon number collection (high light yield)

[1]Stefan Gundacker, ect Measurement of intrinsic rise times for various L(Y)SO and LuAG scintillators with a general study of prompt photons to achieve 10 ps in TOF-PET[J],2016,61(7).

[2]Joshua W Cates, ect Improved single photon time resolution for analog SiPMs with front end readout that reduces influence of electronic noise[J], 2018, 63(18).

Time resolution of long strip: S-G + 12SiPMs

12 SiPMs in parallel

 ΔT between 2+6 and 4 (left), or 1+5 and 3 (right)

PZC

SiPM readout electronics performance test

risetime : 1ns fall time : 100ns signal amplitude : 2 - 80 mV

 $\sigma_t = \frac{\sigma_{noise}}{(dV/dt)_{MAX}}$

Prototype Test

> Using aluminum foil as the reflector can improve the signal amplitude, thus improve the time resolution.

Prototype test setup

Trigger signal waveform

DT5742 signal waveform

Light collection of scintillator detector

Light collection improved by Tin foil

Adding fiber to improve light collection

Light collection of scintillator detector

Optical glue: dowcorning 184 (Corrosion-free and light-transparent)

48h room temperature curing

Completely wraps the scintillator to reduce light leakage

Time resolution test

