超级陶粲工厂桶部粒子鉴别探测器预研 STCF-RICH研究进展

张慧斌 代表RICH工作组

2024年超级陶粲装置研讨会

2024年7月9日

STCF-RCH成员与分工

陈石^{1, b}, 陈时平^{1, b}, 黄清源^{1, a}, 黄文谦^{1, ab}, 李嘉铭^{2, c}, 梁焜玉^{2, ab}, 刘建北^{2, ab}, 刘倩^{1, ab}, 邵明^{2, ab}, 汪安琪^{2, ab}, 王滨龙^{1, a}, 杨 子昱^{2, c}, 张慧斌^{1, ab}, 张志永^{2, ab}, 赵雷^{2, c}

> ¹中国科学院大学 ²中国科学技术大学 ⁹模拟重建⁶探测器⁶电子学

STCF-PIDB设计与指标需求

RICH方案与指标

- $3\sigma \pi/K @ 2GeV: C_6 F_{14}, n \sim 1.3$
- 扩展区:~100mm
- 读出像素: 5×5mm2
- MPGD: 高增益~10^5, 低IBF~10^(-3)
- 材料物质量:~17%
- 切伦科夫角分辨: <1.5 mrad

	thickness [mm]	X/X_0
Top ceramic plate	3	0.03
Quartz window	3	0.03
Radiator C_6F_{14}	10	0.05
THGEM+Micromegas	0.4	0.01
Anode+FEE	8	0.02
Aluminum plate	5	0.05
FEE cooling	5	0.05
Total		0.24

University of Chinese Academy of

RICH探测器性能模拟

• 在Geant4 中几何建模并设置参数

5

• 得到平均光子数~10

粒子鉴别算法(极大似然法)

- 基于外推径迹动量/坐标计算不同粒子假设下的光子 击中位置pdf
- 根据pdf构造似然函数,并计算实际击中位置的似然 函数值
- 比较不同假设下的似然函数值,进而鉴别粒子种类

鉴别能力预期

- 在OSCAR框架下全模拟
 - 使用实时pdf算法,考虑了内层探 测器的物质效应
 - 扫描不同动量/角度的π/K,模拟单
 径迹入射情况
 - $\rightarrow P \in (0.2 \ GeV/c, 2.4 \ GeV/c)$
 - → θ ∈ (36°, 90°), φ随机抽样
 0° ~ 360°

	90	-0.89	0.949	0.953	0.942	0.981	0.989	0.992	0.993	0.993	0.993	0.991	0.991	0.993	0.992	0.99	0.989	0.99	0.989	0.988	0.983	0.974	0.968	
		0.895	0.952	0.955	0.941	0.981	0.987	0.992	0.992	0.992	0.993	0.992	0.993	0.991	0.991	0.992	0.989	0.989	0.987	0.985	0.982	0.979	0.965	
		-0 .89	0.953	0.956	0.936	0.983	0.99	0.992	0.994	0.992	0.992	0.992	0.991	0.992	0.991	0.99	0.99	0.99	0.987	0.985	0.981	0.971	0.963	0.0
	80	0.894	0.946	0.963	0.936	0.98	0.988	0.991	0.992	0.994	0.993	0.992	0.993	0.991	0.991	0.991	0.99	0.987	0.986	0.983	0.972	0.965	0.947	0.9
	00	0. 888	0.95	0.958	0.913	0.979	0.987	0.992	0.992	0.992	0.992	0.992	0.992	0.991	0.991	0.988	0.989	0.985	0.98	0.97	0.957	0.942	0.922	
		0.889	0.947	0.962	0.904	0.975	0.987	0.992	0.991	0.992	0.991	0.991	0.989	0.991	0.989	0.989	0.987	0.981	0.972	0.96	0.948	0.918	0.885	
Ъ		-0 .881	0.947	0.963	0.895	0.974	0.986	0.99	0.991	0.99	0.99	0.991	0.99	0.989	0.987	0.987	0.981	0.973	0.962	0.946	0.92	0.892	0.84	 0.8
₽	70	0.883	0.947	0.965	0.892	0.969	0.985	0.989	0.991	0.99	0.99	0.99	0.989	0.989	0.987	0.985	0.98	0.967	0.955	0.928	0.897	0.856	0.81	
		-0 .881	0.947	0.965	0.892	0.966	0.984	0.99	0.988	0.99	0.988	0.99	0.989	0.988	0.986	0.978	0.971	0.96	0.941	0.912	0.873	0.832	0.777	
		0.881	0.949	0.965	0.909	0.958	0.982	0.986	0.989	0.989	0.989	0.99	0.988	0.985	0.984	0.976	0.963	0.948	0.925	0.887	0.846	0.807	0.756	 0.7
	60	0.869	0.948	0.967	0.925	0.948	0.981	0.986	0.987	0.988	0.988	0.987	0.985	0.985	0.98	0.972	0.957	0.939	0.909	0.874	0.814	0.763	0.705	
		0.864	0.946	0.965	0.928	0.941	0.974	0.984	0.985	0.987	0.986	0.988	0.987	0.983	0.975	0.968	0.953	0.931	0.901	0.857	0.803	0.748	0.69	
		0 .849	0.942	0.965	0.944	0.933	0.966	0.98	0.985	0.986	0.986	0.985	0.983	0.981	0.971	0.962	0.945	0.925	0.875	0.838	0.775	0.707	0.659	 0.6
	-0	0.837	0.936	0.96	0.954	0.932	0.962	0.978	0.983	0.982	0.983	0.985	0.98	0.978	0.971	0.961	0.941	0.915	0.864	0.823	0.756	0.688	0.632	0.0
	50	0. 816	0.937	0.96	0.96	0.925	0.955	0.975	0.979	0.979	0.981	0.982	0.979	0.974	0.968	0.953	0.933	0.903	0.861	0.812	0.741	0.683	0.625	
		0.779	0.933	0.959	0.964	0.932	0.947	0.969	0.976	0.976	0.98	0.979	0.976	0.973	0.964	0.954	0.923	0.894	0.848	0.778	0.738	0.664	0.596	0 F
		0 731	0.934	0.957	0.966	0.935	0.938	0.961	0.973	0.976	0.976	0.976	0.972	0.968	0.966	0.946	0.92	0.886	0.834	0.787	0.724	0.641	0.588	 0.5
	40	0.639	0.93	0.955	0.967	0.943	0.937	0.952	0.967	0.967	0.973	0.973	0.97	0.966	0.959	0.944	0.919	0.876	0.831	0.775	0.71	0.658	0.579	
		E	0.353	0.913	0.952	0.934	0.911	0.923	0.951	0.956	0.964	0.963	0.964	0.96	0.945	0.926	0.995	0.862	0.796	0.743	0.005	0.616	0.55	
			0.155	0.313	0.352	0.034	0.311	0.323	0.351	0.350	0.304	0.363	0.304	0.90	0.345	0.320	0.095	0.002	0.190	0.143	0.095	0.010	1.15	0.4
			400		600		800		1000)	1200)	1400)	1600) '	1800)	2000)	2200)	2400	

RICH工程样机制作与测试

- 探测面积320mm×320mm
- 完成Fe⁵⁵源测试
 - 增益可达10⁵,满足单光子探测需求
- 完成烛光实验尝试单光子探测

Y_MM = 540V transmission = 480V@3mm THGEM = 900V

1000/z 800

-100

-200

41m

宇宙线实验测试结果

- 有效事例数3711 ٠
- 类电离点:距离预期电离位置<18mm ٠
- 类光子点:距离预期光子位置<25mm •

Convert Hit map for RICH

150

ш200 /х

150E 100E 50F

-50E

实验与模拟差异分析

	模拟值 (@180nm)	实验值 (@180nm)	相对比例	
辐射体透过率	95% (1cm)	11.2% (1cm)	11.8%	需要检查劣化原因;换 SiO_2
石英玻璃透过率	87.6% (4mm)	92.2% (4mm)	105.3%	
CsI QE*	10.5%	6 ^{+2.5} %	57%	在手套箱中安装可以减少_3%成分
光电子进孔效率*	78% (使用丝室效率)	65% × 50%(?)	(41.7%)	紫外激光实验验证
电子学测量阈值	90%	62%	68.9%	改进估计模型
总效率			2.0%	
产额	9.7	0.59	5.2%	

辐射体(C_6F_{14})准备与纯化

- 探测器灵敏区间为180nm左右真空紫外光,易被各种物质吸收
- C_6F_{14} 易于溶解水和氧气→需要进行纯化
- 开发使用金属触媒进行纯化,效果优秀
- 化工厂家从未关注这一透过率参数,因而该参数控制不稳定
- 气质分析发现即使纯度超过99%的样品也不一定合格
- 与厂家持续沟通,共同研究主要影响成分与工艺

中国科学

University of Chinese Academy of Sciences

纯化系统

透过率测试系统

编码读出方案

- 目前编码复用的方案可以将读出路数减至 1/4
- 同时模拟结果显示PID能力与非编码方式 相当,优于同读出路数的大像素方案
- 实验验证了解码算法可稳定工作

解码结果

编码读出板 全部学院文字

University of Chinese Academy of Sciences

PIDB 电子学的研究目标

- 海量读出通道数且电子学直接安装在探测器背部的 有限空间,需要高集成度、多通道的读出ASIC芯 片。
- 需要进行高精度的电荷与时间测量,支持全波形数 字化输出。

• 单通道极限计数率为16 kHz。

读出电子学指标	需求
电荷测量范围	48 fC
电荷测量噪声(ENC)	0.5 fC @ 16 fC @ 20 pF
时间测量精度	≤1 ns @ 16 fC @ 20 pF
总读出通道数(非编码)	518,400
单通道平均事例率	~1.6 kHz

?* ??

中国科学

University of Chinese Academy of Sciences

PIDB 芯片设计进展

原理验证版本芯片设计完成并流片封装后,展开 ٠ 了系列性能测试,测试结果表明其关键性能指标 满足设计需求。

5 fC

10 fC 15 fC

20 fC 25 fC

30 fC

35 fC

40 fC 45 fC

50 fC

University of Chinese Academy of Sciences

20

Sampling cell

原理验证版本芯片显微照片

基于PIDB 芯片设计的FEE

- 基于该原理验证芯片,完成了512通道原理 验证前端读出电子学的设计。
- 基于该原理验证前端读出电子学完成了⁵⁵Fe 的能谱测试。

与探测器联调现场照片

400 300 200 10 μs 20 μs Signal interval 探测器联调时最小可测信号间隔

University of Chinese Academy of Sciences

原理验证前端读出电子学照片

总结与展望

- 进行了 C_6F_{14} 辐射体的宇宙线实验
 - 测得光子数不及预期
- 读出电子学完成了设计与初步验证
- 高透过率辐射体的稳定货源、大面积高QE的CsI镀膜等问题仍待攻克
- 光电子进孔效率测量实验正在筹备中

Backup

• 样机测试结果

Combine gain

•

1000000

100000

10000

1000

Gain

Backup

• QE

RICH波形选择条件

项目	条件	统计量	相对前一步效率
阈值	peak_ADC - baseline_mean > 4×baseline_RMS	873659	
下冲	abs(npeak_ADC-baseline_mean)<2*baseline_Vpp && npeak_ADC>100	864170	98.9±0.0%
峰值位置	peak_T>215 && peak_T<250	47989	5.55±0.02%
上升时间	peak_RT>=10 && peak_RT<=35	32734	68.2±0.2%
峰半高全宽	peak_FWHM >=30 && peak_FWHM <=60	11843	36.2±0.3%

(电子学说压到1.6pC以内可以有效压低串扰)

- 使用SiO2辐射体,探测器转动30度
- 模拟中 (2GeV π), 11.2%透过率的C6F14平均光电子数1.48, SiO2平均光子数5.7光子数, 3.9倍
- 实验比值0.59:1.32,2.4~4.4倍

21