

STCF主漂移室研制进展

马 中国科学院近代物理研究所 STCF-MDCH工作组

2024 STCF研讨会 兰州大学 2024.07.09

- 探测器进展
 - 整体设计优化
 - 探测器工艺研究(定位子,穿孔工艺等)- 探测器样机研究
- 电子学进展
 - 原理验证电路设计与测试
 - 基于分立元件的原理样机设计
 - ASIC芯片研制
- ・下一步工作计划

外径迹探测器(MDCH)位于谱仪内侧,参与触发,承当径迹重建任务

系统性能要求:

- ≻ 漂移室立体角接收度达到93% (θ<20°)</p>
- ➢ 对横动量大于150 MeV/c的带电粒子的径迹 探测效率高于90%
- ➢ 对横动量为1GeV/c的带电粒子的动量分辨率 好于0.5%
- ≻ dE/dx测量分辨率好于6%
- ≻ 径向总物质量低于5%X₀
- ▶ 电子学应对高计数率需求(200~400kHz/ch)

新一代正负电子对装机(STCF) 质心能量 2-7GeV,亮度 >0.5~1x10³⁵ cm⁻² s⁻¹

超级陶粲装置 Super Tau Charm Facility (STCF)³

漂移室属于成熟的探测技术,STCF漂移室及其读出电 子学的<mark>挑战</mark>主要来自于<mark>高计数率</mark>,最内层计数率 (~400 kHz/channel)需要优化

(1) 超小单元设计(~5 mm)

(2)

高计数率电子学设计

Figure 6.2.1: The schematic structure of the MDC.

Table 6.2.1: The main parameters of the STCF MDC conceptual design.

Superlayer	Radius (mm)	Num. of Layers	Inclination (mrad)	Num. of Cells	Cell size (mm)
А	200.0	6	0	128	9.8 to 12.5
U	271.6	6	39.3 to 47.6	160	10.7 to 12.9
V	342.2	6	-41.2 to -48.4	192	11.2 to 13.2
А	419.2	6	0	224	11.7 to 13.5
U	499.8	6	50.0 to 56.4	256	12.3 to 13.8
V	578.1	6	-51.3 to -57.2	288	12.6 to 14.0
А	662.0	6	0	320	13.0 to 14.3
А	744.0	6	0	352	13.3 to 14.5
total	200 to 827.3	48		11520	

漂移单元的最大漂移时间约为 250 ns 主漂移室信号宽度约为500 ns, MDC最内层计数率非常高的。在 500 ns 的时间窗内, MDC信号堆积的概率约为18%, 单通道的信号重叠概率很高。

•

E[v_per_cm]

1.0000e+004

9.2857e+003

8.5714e+003

7.8572e+003 7.1429e+003

6.4286e+003 5.7143e+003 5.0001e+003 4.2858c+003 3.5715e+003

2.8572e+003

2.1429e+003

1.4287e+003

7.1438e+002 1.0000e-001

800

1200

6mm CELL 13layer Sense: 20um 1200V Field: 100um -300V 场丝接近20kV/cm

ine₂

1500V

Mean1 = 1120.761

Sigma1 = 97.990

Mean2 = 572.564

Sigma2 = 66,481

400

colution(FWHM/Mean) = 20.590

丝张力:重力挠度、静电力平衡、端板受力 阳极丝:镀金钨丝20um (30g)场丝:铝丝100um (80g)

	BES III (6796 cell) (外: 5024+16128=21152 内: 484+1612=2096 合阶: 1288+4144=5432 2096+5432+21152=28680根 丝)	MEGII (IDEA drift chamber 内室11904根丝), 大室 343968根丝	BELLE II CDC 14336cell	STCF (CDR 11520 cell, 48448根丝) (超小单元 19488 cell, 84448根丝)
大小	内半径182.5mm 有效长度1102mm 外半径810mm 有效长度2306mm	2T 长4m, 半径35~200CM 内室17~30cm长度1.93m	1.5T 内半径 160mm 外半径1130mm 长度2325mm	1T 内径200mm 外径850mm 有效长度1274*2mm
丝层设计	内室 25um 镀金钨丝 18g 110um 铝丝 54g 外室 25um镀金钨丝50g 110um铝丝 170g 内室: 100kg (max:500kg) 外室: 3500kg (max: 5000kg)	MEGII內室 灵敏丝: 镀金钨丝20um 25g 场丝: 镀银铝丝 40微米 (20g) 灵敏丝层上场丝 40微米 (30g) 补偿丝 50微米 (30g) 外室: 定位子? 还未加工?	56层 30um 镀金钨丝 50g 126um铝丝 (无电镀) 80g 外桶5mm 内桶0.5mm CFRP BELLE (30um :80g 126um:160g)	定位子+内筒设计 定位子方便更换坏 死的丝 PCB可以做小单元, 但需要考虑断丝怎 么处理
单元 大小	内室12mm 外室16mm	内室6mm 外室??	内室 6.59~9.34mm 外室16.69mm	5~11mm

开展了丝张力检测系统研究,并迭代了3个版本,从2.8米长度的丝张力测试看,镀金钨丝无明显的蠕变效应,铝丝 张力变弱。

新的测试平台已经开始测试,同时测试的丝数量和种类更多,深圳技术大学提供了更开阔的场地和测试人员。 镀金钨丝 20um (35g) 25um (50g) 铝丝 60um (40g) 100um (100g)

优势:降低电子学通道数压力(400kHz->200kHz),漂移距离短,信号持续时间短,洛伦兹角影响小

难点: 丝层和丝数量更多, 加工工艺难度提升, 空间小, 电子学数量翻倍, 设计需求更紧凑, 丝的物质量会提升

超层序号	超层层数	超层单元数	CELL大小	位置			数量	张力(g)	
А	6	256	5.09~5.76	205		阳极	6144	30	
U	6	256	6.05~6.84		内层	阴极	20480	80	内室受力(ka)
V	6	256	7.16~8.09			内层总丝数	26624		1822 72
А	6	256	8.45~9.55				12244	20	1022.112
U	6	256	10.44~11.80	420			11100	30	日中京上年、
V	6	320	9.77~10.78		21)层	<u> </u>	44480	80	外至受刀(kg)
А	6	352	10.09~11.03			外层总丝数	57824		3958.72
U	6	400	9.97~10.78			所有阳极	19488	30	
V	6	432	10.22~10.99		总	所有阴极	64960	80	
А	6	464	10.46~11.35	833		所有丝数量	84448		5781.44

小型定位子定位技术

定位孔1.4mm

目前开展定位子穿孔技术攻关, 空间非常小 ¹⁰

计算条件: 筒体直径1700毫米, 长度2800毫米。 采用T700纤维, 轴向受力20T。 碳纤维筒体两端用刚体单元连接, 约束底端, 顶端加载轴向载荷20T。

碳纤维桶总厚度4.2mm,铺层角度[±15°/±15°/90°/±15°/90°/±15°/±15°/±15°/90°/±15°/±15°/±15°/±15°/±15°/90°/90°],单层厚度0.2mm

最大位移0.26mm

最大压缩应力13.1MPa

临界失稳系数为12.8,即临界失稳载荷为256T₁₁

0.42

160

孔太多, 计算量太大, 带孔端面正在优化设计

端面形变:目前20T拉力下端面板厚度15mm (端面受力10T+内环受力10T)

斜坡高度>80cm时,端面形变量趋于平缓 (CDR中设计为87)

绝缘定位子 1.4mm+1.8mm+1.4mm 定位孔: 0.1mm 长度0.3mm 可以尝试0.08或0.05的,难度较大 材料: PEEK,熔点334℃,软化点168℃ BESIII: LCP VECTRA A130 铜管孔: 0.6mm (保证绝缘定位子的壁厚0.3~0.4mm,耐压相关)

超小单元工艺面临巨大挑战 <mark>难度在于空间尺寸</mark>

目前定位子外径1.6mm,穿孔位 置1.4mm,场丝小孔内径0.3mm

嵌套工艺 内径0.3mm的铝管+ 外径0.3mm的铜管 肉眼穿丝很难 目前正在进行工装设计

wire tension(Hz)

2米长样机准备拉丝测试 17

10mm单元小样机-气体增益测试

测试电子学: 142A+572A+MCA

测试不同电压和不同工作气体中的探测器增益 增益越高,能量分辨越差 综合研判增益、能量分辨等多方面的制约关系

10 一市五

(%)

辦率

He+C3H8增压曲线

电压

1450 1500

1550 1600 1650 1700 1750

編 50000

⑧ 10mm单元小样机-最大计数率测试

测试MWDC参数: 10mm单元 放射源: 90Sr β放射源 P10气体 阳极: +1200V 阴极: -250V 放大器: FTA820A

结论: MWDC短时间内可以承受1M的计数率 利用SiPM的塑料闪烁体开门, 可以看到宇宙线符合信号

- 探测器进展
 - 整体设计优化
 - 探测器工艺研究
 - 探测器样机研究
- ・电子学进展
 - 原理验证电路设计与测试
 - 基于分立元件的原理样机设计
 - ASIC芯片研制
- ・下一步工作计划

- •基于波形数字化提取时间与电荷信息
- •采用子母板结构 单个子板上两个通道
- 母板可以连接两块子板
 - FPGA, 两片ADC
 - PLL为ADC提供同步时钟
 - •时钟接口、触发接口以及数据接口

- 前放OPA855
 - 第一级增益为10k
 - 通过母板DAC进行基线配置
- ADC驱动LTC6419
 - 差分放大增益为4
 - 子母板接插件输出
- 子板信号通过SMA输入
 - 包含隔直电容及匹配电阻
 - 阻值根据MDC信号丝阻抗进行 调整

- 验证母板波形数字化
 - ADC选用 (AD9680-1000)
 - 双通道, 14 bit
 - 采样率为1 Gsps
 - 模拟带宽2 GHz
- · 子板通过母板进行供 电

在测试过程中,任意波形发生器输出信号类型为电压信号,因此需要将任意波形发生器输出的信号通过电压-电流转 换结构转化为电流信号,再输入至原型电子学模块的TIA前置放大电路中。

原理验证电路测试结果(一)

不同采样率(80~1000Msps)下电荷和时间测量结果

- 200 fC信号
 - 电荷精度: 3.24 fC@125 Msps
 - 时间精度: 609 ps@125 Msps

• 时间精度: 490 ps@125 Msps

在125 Msps情况下, 电荷测量精度满足好于8 fC, 时间测量精度满足好于1 ns的设计指标。因此选择125 Msps作为原理样机的采样率, 用于实现低采样率下的多通道波形数字化。

波形不一致对于电荷时间测量影响

- 200 fC电荷量下,形状不同的MDC 信号进行测试
- 电荷测量精度: 4.6 fC RMS

基于分立元件的原理样机设计

- 针对原理验证电路的测试结果,考虑<mark>超小单</mark> 元和装配结构,进行原理样机初版电路设计
- 2~4通道子母板 → 16通道原理样机
- 16通道接口,直接接收漂移室输出信号,减小测试接口板带来的噪声影响
- 接插件
 - 要求:≥16通道,母座,直角型,机械结构稳定
 - 型号: SAMTEC-SSW-117-02-X-D-RA

漂移室与原理样机连接示意图

漂移室输出接口

- 模拟部分由2通道扩增到16通道
 - 16路 TIA + 成形
- ADC部分
 - 原理样机更换为AD9681(低采样率高 集成型号)
 - 8通道、14 bit、125 MSPS
 - 模拟带宽 650 MHz
 - JESD接口=>LVDS接口
- 数字部分
 - 配合ADC和16通道TIA进行调整

经实验室初步测试,16通道原理样机电路模块的电源、时钟、ADC、DAC均正常工作

ASIC进展—前端模拟放大电路

全差分放大器

- ASIC芯片主集成了16个通道的前端模拟放大电路,单个信号链路主要由跨阻放大器和输出驱动级组成, 实现高带宽、高增益、低噪声的电路指标要求,以适应MDC输出电流信号微弱,事例率高且有效信号 持续时间长的特征。
- 目前已经完成了前端模拟放大电路ASIC的电路结构设计,并通过仿真验证确认电路性能符合指标需求。
 模拟芯片已经完成流片,目前晶圆已制作完成,即将展开封装和测试工作。

性能指标	设计要求	前仿结果	后仿结果
增益	$38 \text{ k}\Omega - 42 \text{ k}\Omega$	38.11 kΩ	38.11 kΩ
带宽	>80 MHz	80.96 MHz	85.47 MHz
单通道功耗	<55 mW	48.73 mW	48.75 mW
输入电荷噪声	<6 fC	1.39 fC	1.65 fC
定时精度	<300 ps	116.4 ps	127.8 ps

前置放大器单通道设计要求与仿真结果

TIA放大器

- 探测器进展
 - 整体设计优化
 - 探测器工艺研究
 - 探测器样机研究
- 电子学进展
 - 原理验证电路设计与测试
 - 基于分立元件的原理样机设计
 - ASIC芯片研制
- ・下一步工作计划

•探测器:

- ▶ 2米长样机穿丝工艺测试
- ▶ 继续开展定位子穿丝工艺,提升丝定位精度。
- ▶ 开展机械应力与铺层优化
- ➤ 5mm单元小样机的组装
- •电子学:
 - > 硬件和固件方面的准备和扩展,小尺寸读出电子学样机优化
 - ▶ 开展基于分立元器件的读出电子学原理样机的测试
- 开展探测器和电子学联合测试

探测器+电子学开展第二轮联合测试

感谢MDCH各位同仁的努力! 欢迎批评指正! 欢迎各位同仁参与MDCH!

MDCH工作组 项目负责人:段利敏(IMPCAS) 曹喆(USTC)

中国科学院近代物理研究所 中国科学技术大学 深圳技术大学 华北水利水电大学

	BES Ⅲ (6796 cell) (外: 5024+16128=21152 内: 484+1612=2096 合阶: 1288+4144=5432 2096+5432+21152=28680根 丝)	MEG 玑(IDEA drift chamber 内室 11904 根丝), 大室 343968根丝	BELLE II CDC 14336cell	STCF(11520 cell, 48448根丝) 内室cell变小,预计增加 1倍单元,约3000根丝)
大小	内半径182.5mm 有效长度1102mm 外半径810mm 有效长度2306mm	2T 长4m,半径35~200CM 内室17~30cm 长度1.93m	1.5T 内半径 160mm 外半径1130mm 长度2325mm	内径200mm 外径850mm 有效长度1274*2mm
丝层设计	25um镀金钨丝张力(内室 18g, 外室50g) 110um铝丝(内室54g, 外 室170g) 内室: 100kg (max:500kg) 外室: 3500kg (max: 5000kg)	MEG I 内室 灵敏丝: 20um (1728根 丝) (9层, 192cell/层, 12个 扇区, 16cell/扇区) 场丝: 40微米 (7680) 场丝和补偿丝 50微米 (2496) 外室: 定位子? 还未加工?	56层 30um(25um另一个 CDC?) 镀金钨丝 50g 126微米 铝丝(无电镀) 80g 外桶5mm 内桶0.5mm CFRP BELLE(30um :80g 126um:160g)	定位子+内筒设计 定位子方便更换坏死的 丝 PCB可以做小单元,但 需要考虑断丝怎么处理
单元大小	内室12mm 外室16mm	内室6mm 外室??	内室6.59~9.34mm 外室16.69mm	

	BES Ⅲ (6796 cell) (6796+21152=28678根丝)	MEG 玑(IDEA drift chamber 内室)(<mark>11904</mark> 根丝,大室 343968根丝)	BELLE II CDC 14336cell	STCF(11520 cell, 48448根丝) 内室cell变小,预计增 加 1倍单元,约3000根丝)
气体增益	10 ⁴ ~10 ⁵	gain ·10 ⁵ (1400-1480V)	BELLE耵(2300V,120u m) BELLE(2300V,分辨有 点差 350um)	~10 ⁴
工作气体	He:C3H8(60:40)	He: iC4H10 (90:10)	He: C2H6 (50:50)	
计数率	70kHz	30kHz/cm2	单丝 < 1MHz (平均)	400KHz/ch
加工精度	台阶安装精度∶50um 定位孔精度<50um			
亮度	~10 ³³ cm ⁻² s ⁻¹	~10 ³⁴ cm ⁻² s ⁻¹	50ab ⁻¹ 8*10 ³⁵ cm ⁻² s ⁻¹	~10 ³⁵ cm ⁻² s ⁻¹

MEG II Drift chamber: design

ereo angle + ×	x x x x x stereo angle + x x x x stereo angle - guard layer	Full stereo cylindrical DC with angles (102÷147 mrad) Small square cells - (5.8÷7.8 mm at z=0, 6.7÷9.0 a (~ 12 wires/cr	n large stered nt z=±L/2) n²)	D
field	to sense field to sense statio 3 : 1 wires ratio 5 : 1	Active length L	1932	mm
		N. of layers	9	
The wire net of deperates a n	created by the combination of + and – orientation	N. of stereo sectors	12	
generates a n	lore unionn equipotential plane	N. of cells per layer	192	
sense wires:	20 um diameter W(Au) => 1728 wires	N. of cells per sector	16	
field wires:	40 μm diameter Al(Ag) => 7680 wires	Cell size (at z=0)	5.8 ÷ 7.8	mm
f. and g. wires: 50 µm diameter Al(Ag) => 2496 wires		Twist angle	±60°	
	11904 wires in total	Stereo angle	102 ÷ 147	mrad
		Stereo drop	35.7 ÷ 51.4	mm

High wire densities, anyway, require complex and time consuming assembly procedures and need novel approaches to a feed-through-less wiring

combination of + and –wire orientation produces a more uniform equipotential surface \rightarrow 5:1 field to sense wires ratio (more field wires) \rightarrow better E-field isotropy and smaller E×B asymmetries)

遇到的问题:UV两种丝层结构,无束流方向直丝 两个立体角中间的丝层怎么排布? <mark>灵敏丝扭转</mark>,中间丝层不变?

MEGI 60多根断丝,来源于腐蚀,大部分为40微米场丝 断丝如何处理?

Table 2Tensions for different CDCH wires

Туре	Tension (g)
Field wire	19.12 ± 0.20
Field wire in sense layers	29.64 ± 0.20
Guard wire	29.64 ± 0.20
Sense wire	24.51 ± 0.20

STCF布丝张力(铝丝/	小张力情况)
(未考虑丝长影响)	

开展应力分析 丝张力和重力分析

场丝		阳极丝						
128								
	А	U	V	Α	U	V	А	Α
cell单元	128	160	192	224	256	288	320	35
场丝层数	7	6	7	7	6	7	6	
阳极丝层数	6	6	6	6	6	6	6	
场丝总数	2560	2880	3840	4480	4608	5760	5760	704
场丝张力	170	170	170	170	170	170	170	17
阳极丝总数	768	960	1152	1344	1536	1728	1920	211
阳极丝张力	50	50	50	50	50	50	50	5
总张力	473600	537600	710400	828800	860160	1065600	1075200	130240
应力 (T)	0.4736	0.5376	0.7104	0.8288	0.86016	1.0656	1.0752	1.302
	6.85吨							

场 <u>丝</u>		阳极丝						
128								
	A	U	V	А	U	V	A	А
cell单元	128	160	192	224	256	288	320	352
场丝层数	7	6	7	7	6	7	6	7
阳极丝层数	6	6	6	6	6	6	6	6
场丝总数	2560	2880	3840	4480	4608	5760	5760	7040
场丝张力	30	30	30	30	30	30	30	30
阳极丝总数	768	960	1152	1344	1536	1728	1920	2112
阳极丝张力	24.5	24.5	24.5	24.5	24.5	24.5	24.5	24.5
总张力	95616	109920	143424	167328	175872	215136	219840	262944
应力 (T)	0.095616	0.10992	0.143424	0.167328	0.175872	0.215136	0.21984	0.262944
	1.39吨							

综合考虑工作气体的物质量,参考其他漂移室设计,模拟和计算了可能 用到的一系列气体比分的漂移速度参数。

探测器进展-气体增益研究

	Ar/CO ₂ /CH ₄	He/CH ₄	He/C ₂ H ₆	He/C ₃ H ₈	He/iC ₄ H ₁₀
gas mixture	(89/10/1)	(60/40)	(50/50)	(60/40)	(80/20)
drift velocity					
(cm/us)	4.79027	3.79499	3.90242	3.61329	3.23577
transverse					
diffusion					
(um/√cm)	290.44	229.142	218.612	197.159	194.348
lorentz angle (°)	21.2963	14.2451	14.5382	13.0413	11.345

90%He+10%iC4H10的漂移速度相对较慢,需要径迹重建进行位置分辨分析

反卷积滤波波形如图 3.48 所示,从图中反卷积前后波形对比可以看出,经 过反卷积滤波后的波形多峰的特征更为显著,反卷积使数字化的波形更接近 MDC 探测器输出的信号。

图 3.48 反卷积前后波形比较

通过仿真验证反卷积对时间测量的影响,此处验证过程中使用电荷量为 200 fC 的不同仿真信号进行验证。反卷积滤波前后时间测量精度分别如图 3.49 以及图 3.50 所示。当采样率为 500 Msps 时,经过反卷积滤波之前,时间测量精 度为 1.26 ns RMS,经过反卷积滤波之后,时间测量精度为 979 ps RMS,可以达

当采样率高于100 Msps之后, 再提高采样率对于波形分辨探测效率的影响并不显著。

表 2.1 主漂移室读出电子学总结

	BESIII	BelleII	MEGII
前放结构	跨阻型	电荷灵敏型	电压放大
时间测量方案	采用 HPTDC 测 量	采用 FPGA- TDC 测量	波形采样后进 行束团定时
电荷测量方案	数值积分	数值积分	
最内层漂移单元尺寸 (mm)	14	7	6.6
计数率	30 kHz	30 kHz	$\sim \!\! 40 \ kHz$

Meg II

KEK BELLE II CDC

图 3-22 漂移室布丝机

图 3-29 拉完丝后对定位子的密封

图2.1 BESIII探测器剖面图

5