Introduction on the PID Detectors at EicC

Xin Li

Institute of Modern Physics, Chinese Academy of Sciences 07/08/2024

2024 workshop on Super Tau-Charm Facility

EicC spectrometer overview and its PID requirements

➢PID detectors: DIRC, RICH, LGAD, MRPC

Introduction on EicC

As a future high energy nuclear physics project, an Electron-ion collider in China (EicC) has been proposed based on High Intensity heavy-ion Accelerator Facility (HIAF), a heavy-ion accelerator currently under construction. The proposed collider will provide highly polarized electrons (with a polarization of ~80%) and protons (with a polarization of ~70%) with variable center of mass energies from 15 to 20 GeV and the luminosity of $(2-3) \times 10^{33}$ cm⁻²·s⁻¹.

The main focus of the EicC will be precision measurements of the structure of the nucleon in the sea quark region, including 3D tomography of nucleon; the partonic structure of nuclei and the parton interaction with the nuclear environment; the exotic states, especially those with heavy flavor quark contents; and the origin of mass by measurements of heavy quarkonia.

EicC Spectrometer Overview

Sub detectors to realize the EicC physics goals:

- 1) Vertex & tracking detectors
- 2) PID detectors (Cherenkov + ToF)
- 3) Calorimeters
- 4) Far Forward detectors
- 5) Luminosity monitor & Polarimetry
- 6) DAQ

General requirements:

- Large rapidity ($-4 \le \eta \le 4$) coverage;
- High precision & fast tracking in high luminosity
- Electromagnetic and Hadronic Calorimetry with large momentum coverage
- Accurate PID to separate π , K, p in large momentum range
- Large acceptance for diffraction, tagging, neutrons
- Strict control of spectrometer's background and systematic errors

Detector Requirements for PIDs

- Compact structure and radiation resistant
- PID power with large momentum coverage:
 < 4 GeV/c at e-Endcap;
 - ≤ 15 GeV/c at ion-Endcap ;

 \leq 6 GeV/c at Barrel.

PID detectors:

- Barrel PID: High performance Detector of Internal Reflection Cherenkov lights (hpDIRC)
- Endcap PID: Ring Imaging Cherenkov (RICH) detectors, dRICH for ion-endcap, mRICH for e-endcap
- Low Momentum PID (< 2GeV/c): MPRC, LGAD

Barrel DIRC for PID

Detector of Internal Reflection Cherenkov lights (DIRC):

Different charged particles induce Cherenkov radiation with different Cherenkov angles, DIRC achieve PID through reconstructing their Cherenkov angles, by measuring the transit time and exit position/angle of Cherenkov photons induced by different particles.

- Consisted of fused silica(n=1.47) as Cherenkov radiator and MCP-PMTs as photosensor array
- Compact structure as barrel detector
- Achieve 3σ π/K separation up to 6 GeV/c with angle resolution ~ 1mrad

fused silica with n = 1.47

Reference from PANDA & EIC

DIRC Module Design

- Quartz radiator bar: 15mm x 17mm x 3300mm
- Expansion volume(EV): 208mm x 340mm x 300mm
- MCP-PMT: Hamamatsu R10754 (pixel size: 5.2mm x 5.2mm) or Photek
 MAPMT253 (pixel size: 1.6mm x 1.6mm)
- Tray box size: 50mm x 320mm x 4000mm with 6 bar+EV
- 12 trays forms a barrel detector with a minimum radius R = 0.7m
- Focusing: spherical 3-layer lens (Fused silica N-LAK33B) curvature radius:
 30cm, Thickness: 10mm

Definition of measured DIRC angular resolution:

$$\sigma_{\theta_c}(\text{photo}) = \sqrt{\sigma_{chrom}^2 + \sigma_{foc}^2 + \sigma_{bar}^2 + \sigma_{trans}^2 + \sigma_{rec}^2}$$

- σ_{chrom}: the dispersion contribution of the quartz radiator (wavelength: 300-700 nm)
- σ_{foc}: error from the optical focusing lens and the pixel size of photosensors
- σ_{bar}: the influence of radiator thickness (flatness) on photon yield and transmission efficiency;
- σ_{trans} : transit fluctuation due to the roughness of the radiator
- σ_{rec} : error from incident particle tracking

DIRC Simulation

Simulation Input & process:

Reference from "Simulation, Reconstruction, and Design Optimization for the PANDA Barrel DIRC", 2016

Wavelength	Bulk transmission	# faces	Reflection coefficient	Surface roughness
[nm]	[1/m]			[Å]
406	$0.994 \pm 3.2 \cdot 10^{-4}$	49	$0.99984 \pm 1.6 \cdot 10^{-5}$	4.9 ± 1.3
532	$0.997 \pm 2.7 \cdot 10^{-4}$	49	$0.99991 \pm 1.4 \cdot 10^{-5}$	4.7 ± 1.3
635	$0.9994 \pm 8.0 \cdot 10^{-5}$	49	$0.99996 \pm 1.5 \cdot 10^{-5}$	3.7 ± 3.0

2024/7/8

DIRC simulation and prototype setup

GENERAL

Parameter			Unit			
Spectral response			160 to 850			
Wavelength of maximum response			380			
Window material			Synthetic silica			
Photocathode	Material		Multialkali			
	Minimum effective area		23 × 23			
Dynode	Dynode structure	2 st	2 stages Microchannel plate			
	Channel diameter		10			
Number of anode pixels			16 (4 × 4 matrix)			
Anode pixel size			5.28 × 5.28			
Operating ambient temperature ®			-30 to +45			
Storage temperature 8			-30 to +50			
	D		11-1		B B	
0	Parameter		Value		Unit	
Supply voltage	Parameter Between anode and cathode		2700		Unit V	
Supply voltage Average anode cum	Parameter Between anode and cathode ent		2700 2		Unit V µA	
Supply voltage Average anode cum	Parameter Between anode and cathode ent STICS (at 25 °C, 2200 V)		2700 2		Unit V µA	
Supply voltage Average anode cum	Parameter Between anode and cathode ent STICS (at 25 °C, 2200 V) Parameter	Min.	Value 2700 2 Тур.	Max.	Unit V µA	
Supply voltage Average anode curre CHARACTERIS	Parameter Between anode and cathode ent STICS (at 25 °C, 2200 V) Parameter Luminous (2856 K)	Min. 80	Value 2700 2 Typ. 110	Max.	Unit V µA	
Supply voltage Average anode cum CHARACTERIS Cathode sensitivity	Parameter Between anode and cathode ent STICS (at 25 °C, 2200 V) Parameter Luminous (2856 K) Blue sensitivity index	Min. 80	Value 2700 2 Typ. 110 7.5	Max. 	Unit V μΑ Unit μA/Im —	
Supply voltage Average anode cum CHARACTERIS Cathode sensitivity Anode luminous sen	Parameter Between anode and cathode ent STICS (at 25 °C, 2200 V) Parameter Luminous (2856 K) Blue sensitivity index sitivity	Min. 80 22	Value 2700 2 Typ. 110 7.5 110	Max. — —	Unit V μΑ Unit μA/Im Α/Im	
Supply voltage Average anode curn CHARACTERIS Cathode sensitivity Anode luminous sen Gain	Parameter Between anode and cathode ent STICS (at 25 °C, 2200 V) Parameter Luminous (2856 K) Blue sensitivity index sitivity	Min. 80 22 	Value 2700 2 Typ. 110 7.5 110 1 × 10 ⁶	Max. — — —	Unit V μΑ Unit μΑ/Im Α/Im —	
Supply voltage Average anode cum CHARACTERIS Cathode sensitivity Anode luminous ser Gain Dark current (After 3	Parameter Between anode and cathode and STICS (at 25 °C, 2200 V) Parameter Luminous (2856 K) Blue sensitivity index sitivity 0 minutes storage in darkness)	Min. 80 22 	Value 2700 2 Typ. 110 7.5 110 1 × 10 ⁶ 5	Max. — — — — 30	Unit V μΑ Unit μΑ/Im Α/Im ΛIm nA	
Supply voltage Average anode curn CHARACTERIS Cathode sensitivity Anode luminous sen Gain Dark current (After 3	Parameter Between anode and cathode ent STICS (at 25 °C, 2200 V) Parameter Luminous (2856 K) Blue sensitivity index sitivity 0 minutes storage in darkness) Rise time	Min. 80 22 	Value 2700 2 Typ. 110 7.5 110 1 × 10 ⁶ 5 195	Max. — — — — 30	Unit V μA Unit μA/Im 	
Supply voltage Average anode curr CHARACTERIS Cathode sensitivity Anode luminous sen Gain Dark current (After 3	Parameter Between anode and cathode ent STICS (at 25 °C, 2200 V) Parameter Luminous (2856 K) Blue sensitivity index athivity 0 minutes storage in darkness) Rise time Fall time	Min. 80 	Value 2700 2 Typ. 110 7.5 110 1 × 10 ⁶ 5 195 310	Max. 30 	Unit V µA Unit µA/Im A/Im nA nA ps ps	
Supply voltage Average anode curr CHARACTERIS Cathode sensitivity Anode luminous sen Gain Dark current (After 3 Time response	Parameter Between anode and cathode ent STICS (at 25 °C, 2200 V) Parameter Luminous (2856 K) Blue sensitivity index astivity Or minutes storage in darkness) Rise time Fall time Width	Min. 80 22 	Value 2700 2 Typ. 110 7.5 110 1 × 10 ⁶ 5 195 310 400	Max. 30 	Unit V μΑ Unit μΛ/lm nA ns ps ps	

The AuraTek-Square has an active area of 53 mm x 53 mm with packaged anode configurations of 32 x 32 with 1.656mm pitch, 16 x 16 with 3.312mm pitch, and 8 x 8 with 6.624mm pitch. A non packaged version with anode confirguration of 64 x 64 with 0.828mm pitch is also available. Custom readout configurations with different anode pitch and signal connectors can be considered.

- > True noiseless photon counting
- > < 860 ps FWHM pulse width
- > Transit time spread of < 40 ps rms

mRICH: Lens-based Focusing Aerogel Detector Design

Modular RICH is a Cherenkov detector based on aerogel radiator. It uses a Fresnel lens to generate focusing effect to improve position resolution (Fresnel lens limit the wavelength range of transmission light, which can reduce Rayleigh scattering effect). It has compact and flexible structure, and PID power with large momentum coverage.

Front-side view

focal length 7.62cm (3")

Back-side view

mRICH Simulation: PID Separation Power

LGAD: Low gain avalanche detector

Low Gain Avalanche Diodes (LGAD)

Low gain avalanche detector (LGAD): Silica TOF achieves low momentum PID (<2GeV/c) by generating signal pulses with fast rising edges through local avalanche amplification in semiconductors. It has compact pixel structure and can provide high resolution (um) tracking information besides measuring ToF (ps).

- Barrel TOF: right after the tracker system
- Ion-endcap TOF: right after the RICH system
- E-endcap TOF: right after the calorimeter system

	R ^{barrel} (cm)	Length (cm)	Z location (cm)	R ^{endcap} (cm)	R ^{endcap} (cm)	η coverage
Backward			-148	5.4	110.81	[-4.0, -1.1]
Barrel	80 (trying to achieve 60cm)	214				[-1.1, 1.1]
Forward			248	12.3	185.7	[1.1, 3.7]

LGAD-TOF configuration

- Current configuration fits to the tracking system well
- Timing resolution: 20-30 ps / layer
- Spatial resolution: ~30 μm

LGAD: Pythia Simulation

- Event generator: Pythia
- ➤ e (3.5GeV) + p (20 GeV)
- Generate 1M e+p event, simulate the performance of LGAD-TOF correlated to tracking detector
- ➢Simulation ongoing

LGAD: Pythia Simulation

Pythia: e(3.5 GeV) + p(20.0 GeV)

Acceptance

Narrow gap MRPC: toward 20ps resolution

 σ_{TOF} <20 ps, the intrinsic resolution of narrow gaps MRPC is around 15ps, and the time jitter of readout electronics <13~15 ps_

Simulation indicates proper ways to design the gap thickness and arrange the stacks

gap number: >16

Cosmic Ray Platform for Performance Tests

A two-dimensional positioning platform for cosmic ray tests on the performance of DIRC and other detectors:

- 4 layers, size of 55cm x 55cm, each layer composed of 8 modules (4 at x, y direction)
- Each module is composed of 16 triangular plastic scintillators (EJ-200), 32 optical fibers, 8 SiPMs
- Cosmic rays incident on the scintillator excite scintillation photons, which are collected by optical fibers, transmitted to SiPMs for readout. The position resolution of the platform can reach ~1mm.

Preliminary test result: 2D image reconstruction of samples of different materials (W, Pb, Fe), with higher material density resulting in better image resolution. 16

50

60

2024/7/8

Summary

DIRC: manufacturing small prototype, setup test platform

► RICH & LGAD: under simulation, setup R&D platform

Cosmic ray platform: installed at Huizhou, testing & improving tracking algorithm

PID CDR draft link at overleaf: https://www.overleaf.com/read/qwsrhvqxbdfp#46e543

