

STCF实验硅像素内径迹 探测器研究进展

(代表STCF ITK-MAPS工作组)

超级陶粲装置研讨会

2024年7月8日 兰州

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

▶研究背景

- ▶ STCF MAPS Sensor设计
- ▶ STCF MAPS读出电路设计
- ▶ 总结

STCF

- ▶ 超级陶粲装置(Super Tau-Charm Facility, STCF)
 - ◇ 国内新一代正负电子对撞机
 - ◇ 质心能量 2~7 GeV, 亮度>0.5×10³⁵ cm⁻²s⁻¹@4 GeV
 - ◇ 具备进一步提升峰值亮度和实现束流极化的潜力

STCF ITK物理需求

▶ STCF物理目标

Process	Physics Interest	Optimized	Requirements	
		Subdetector		
$ au o K_s \pi \nu_{ au},$	CPV in the τ sector,		acceptance: 93% of 4π ; trk. effi.:	
$J/\psi ightarrow \Lambda ar{\Lambda},$	CPV in the hyperon sector,	ITK+MDC	> 99% at p_T > 0.3 GeV/c; > 90% at p_T = 0.1 GeV/c	
$D_{(s)}$ tag	Charm physics		$\sigma_p/p = 0.5\%$, $\sigma_{\gamma\phi} = 130 \ \mu \text{m}$ at 1 GeV/c	

- 低动量能区粒子径迹探测的挑战
 - ◇ 多次库伦散射,径迹探测效率低

BESIII tracking efficiency,

低物质量是Inner Tracker的必要条件

Chin.Phys.C 40 (2016) 2, 026201

For BESIII, the tracking efficiency drops sharply below 100MeV

CMOS Pixel Sensors

- Hybrid
 - ◇ Sensor和电子学分别优化设计; 抗 辐照能力强
 - ◇ ATLAS/CMS采用
 - ◇ 缺点:物质量大;键合工艺复杂、成 本高

Hybrid Pixel

- Monolithic
 - ◇ 仅需一层硅片,低物质量
 - ◇ 易集成,低成本
 - ◇ STAR/ALICE ITS2采用
 - ◇ 缺点:抗辐照能力弱、电荷收集时间 相对较长

MAPS

MAPS基本结构

- ▶ 小收集极(small fill-factor)
 - ◇ 寄生电容小,功耗低
 - ◇ DPWELL隔离电路内的NWELL
 - の阱工艺(NWELL、PWELL、DPWELL和 DNWELL)
 - ◇ 电荷收集时间相对较慢
 - 改进工艺
 - ◇ 代表芯片: APLIDE、JadePix等
- ▶ 大收集极(large fill-factor)
 - ◇ 全耗尽、抗辐射性极强、电荷收集快
 - ◇ 寄生电容较大(~ 200 fF),功耗增加
 - ◇ C_{pw}可能导致严重串扰→对电路结构有特殊 要求

小收集极MAPS

大小收集极MAPS

小收集极MAPS是STCF ITK的备选方案之一

- ▶ Depleted MAPS-小收集电极
 - ◇ 代表性芯片: TJ-Monopix, MALTA, Fastpix
 - ◇ 输入电容小; 漂移距离更长、电场较弱
 - ◇ 进一步改进: 增强像素边缘处的横向电场
 - 边缘处制作n型gap
 - ・边缘处制作p型注入
 - 边缘处制作n型gap+p型注入
 - ◇ 探测效率、电荷收集速度提升,抗辐照能力(NIEL)增 UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

STCF MAPS设计目标

中科大、山大、华师、西工大合作研究

Beam pipe radius: 30 mm

Layer	R (mm)	Length (cm)	Area (cm ²)
1	36	19. 78	447. 46
2	98	53.85	3315. 87
3	160	87. 92	8838.63

- ▶ 探测器结构的初步设计
 - ◇ 三层探测器(可能更多)
 - ◇ 探测器总面约1.3 m²

◇ 接收角度范围为20°~160°

- ▶ MAPS设计需求
 - ◇ 位置分辨: ≤ 100 µm
 - ◇ 物质量: 单层≤0.3% X₀
 - ◇ 功耗: ≤100 mW/cm² →50 mW/cm²
 - ◇ 时间分辨: ≤ 50 ns (去堆积)
 - ◇ 能量测量(ToT)
 - time walk修正、多次散射修正

▶ 研究背景

▶ STCF MAPS Sensor设计

▶ STCF MAPS读出电路设计

> 总结

Pixel Sensor

- ▶ Sensor尺寸考虑
 - ◇ 位置分辨要求不高→选择较大尺寸像素,减少读出电路规模,进而降低功耗
 - ◇ 尝试比较多种规格模拟连接的sensor,以及多个小像素的数字连接

A: 30×30

B: Pixel-based 180×30

C: Pixel-based 90×60

D: Strip-based 180×30

E: Strip-based 90×60

- ▶ Sensor工艺考虑
 - ◇ 需求: 高阻外延层、四阱工艺
 - ◇基于国外成熟工艺(TJ180)进行仿真设计
 - 外延层电阻率1kΩ·cm;厚度~20µm
 - ◇ 探索国产工艺(NexChip)和华虹宏力(GSMC)
 - · 合肥晶合,外延层电阻率10Ω·cm,无DPWELL
 - 华虹宏力,高阻衬底,定制化四阱
 INIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

TCAD仿真

- nwell_size=2µm, spacing=2µm
- 五种不同工艺:
 - ◇ TJ180nm: 20µm高阻外延+30µm低阻衬底
 - ◇ GSMC130nm: 50µm高阻衬底
 - ◇ BCIS90nm: 10µm 10Ωcm外延+40µm低阻衬底
 - Modified-TJ180nm (N-blanket design) : 10µm Nblanket层+10µm高阻外延+30µm低阻衬底
 - ◇ Modified-TJ180nm pstop: 10µm Nblanket层 +10µm高阻外延+30µm低阻衬底+像素边缘额外 pstop隔离

HR epi (TJ180nm)

电荷收集仿真

- ▶ 170*30有源区连接
- nwell_size=2um, spacing=2um
- nwell=0.8V, sub=-6V
- ▶ 径迹从**中心入射**

	Collected charge (e)	Collection time(ns)
TJ180nm	2039.81	20.56
GSMC130n m	2477.65	89.72
BCIS90nm	1089.64	74.57
Modified– TJ180nm	1969.85	1.81
Modified– TJ180nm pstop	1952.04	2.47

电荷收集仿真

- ▶ 170*30有源区连接
- nwell_size=2um, spacing=2um
- nwell=0.8V, sub=-6V
- ▶ 径迹从**对角入射**

	Collected charge (e)	Collection time(ns)
TJ180nm	531.76	139.83
GSMC130 nm	508.06	163.64
BCIS90nm	277.42	220.92
Modified– TJ180nm	443.38	203.91
Modified– TJ180nm pstop	435.06	34.07

- ▶ OSCAR下进行模拟
- ▶ 像素尺寸170um*30um,使用TJ180nm工艺
- ▶ 使用1GeV mu-随机出射
- ▶ 像素阈值300e,时间窗3000ns

分辨性能

- > 三层平均的单簇团位置分辨和时间分辨
- ▶ 簇团位置由电荷重心法重建
- ▶ 时间分辨计算使用seed像素TOT,并对信号上升沿做Time Walk修正

▶ 研究背景

▶ STCF MAPS Sensor设计

▶ STCF MAPS读出电路设计

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

读出芯片整体架构

- ◆ 像素内电路
 - 放大甄别, 提取前后沿
 - 前后沿分别锁存时间戳
 - 分发时间戳
 - 20MHz格雷码
- ✤ 列级读出电路
 - 列优先级读出 (Column-Drain)
- ◆ 外围电路
 - 阵列分组,提高读出速度
 - 模拟偏置
 - 串行化,等

像素内模拟前端

- ▶ 前端结构:开环放大+电流比较器(参考ALPIDE、Monopix、MALTA)
- ▶ 以strip-based sensor(170×31)读出为例
 - ◇时间测量模式下,Threshold=309.0 e⁻,ENC=11.4 e-,MISMATCH=5.7 e⁻

数字电路

- ▶ 像素内数字电路
 - ◇ 基于TOKEN的优先级读出
 - ◇ 读出架构类似ATLAS FE-I3-
 - ◇ 8-bit前沿、8-bit后沿时间戳
 - ◇ 系统时钟20 MHz

- ▶ 外围数字电路
 - ◇ 阵列分组,并行读出
 - ◇ 电路功能:时间戳校准、汇总、 缓存、组帧、编码、串行化
 - ◇ 读出事例率 ~30 MHz/Chip
 - ◇ 串行速率800 Mbps×2

功耗仿真

- 将170 μm×31 μm像素单元拓展到2 cm×2 cm
 - ♦ Strip-based: 55.7 mW/cm²
 - \diamond Pixel-based: 46.2 mW/cm²
- ▶ 读出电路功耗~ 50 mW/cm²
 - ◇ 为气冷提供可能性

贡献项	功耗	备注	
梅妻阵利措扒击耗	$\sim 26 \text{ mW/cm}^2$	Strip-based	
[[] [] [] [] [] [] [] [] [] [] [] [] []	$\sim 15 \text{ mW/cm}^2$	Pixel-based	
时间戳分发功耗	12.2 mW/cm ²		
像素阵列动态功耗	2.4 mW/cm^2	8.7 MHz/cm ² 事例率	
外围数字电路功耗	23.5 mW	30MHz/Chip	
PLL+串行器+LVDS功耗	39 mW	两路数据+时钟输出	
模拟配置电路	20 mW		
台市封	222.6 mW	Strip-based	
◎ 小杙	184.6 mW	Pixel-based	

- 高精度位置分辨和时间分辨提供更多的可能
- 提出基于超级像素的新型读出架构

传统定时MAPS

- ✓ 小像素→定时快、噪声小
- ✓ 读出通道多→功耗高

TJ & FCIS/BCIS MAPS
 ✓ 大像素→定时较慢、噪声较高
 ✓ 读出通道少→功耗低

基于超级像素读出的MAPS ✓ 小像素→定时快、噪声小 ✓ 读出通道少→数字功耗低

相邻像素做"OR" ✓ 小信号像素的ToT丢失 (Cluster>1时)

错位像素做"OR"

- ✓ 避免小信号ToT丢失(Cluster>1时)
- ✓ 读出有效Group地址
- ✓ 多个Group同时有效时,位置信息丢失

错位像素做"OR"、错位摆放Group

- ✓ 避免小信号ToT丢失
- ✓ 避免位置信息丢失
- ✓ 进一步减小数字功耗

Pixel Core设计

- ▶ Pixel Core: Layout可重复的最小阵列
- ▶ 单行超级像素结构版图实现难度大→4 readout channels/row
- ▶ 从两个维度合并读出通道→2 readout channels/row
 - \diamond Core size: 6×12 pixel
 - ◇ Cluster area小于3×4 pixel时,不损失pixel的信息

同时提供高精度位置分辨和高精度时间分辨

Pixel Core仿真

Hit击中Super pixel不同位置时,不损失ToT概率 平均概率>99.0%

GSMC130-模拟前端

	模拟前端与TJ MAPS结构一至	攵		
ŗ	◇ 开环放大+甄别	~ 	TJ-MAPS (后仿真)	GSMC-MAPS (后仿真)
		功耗	800nA/pix	120×6 nA/pix
	◇ 输入电容减小至2.5 fF	阈值	309.0 e ⁻	153.8 e ⁻
	◇ 模拟性能有明显提升	ENC	11.4 e-	5.1 e ⁻
	\wedge AToT/AOin=180 nc por 1000-	MISMATCH	5.7 e⁻	5.8 e⁻

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

GSMC130-像素内数字电路

- 采用粗时间戳+细计数的定时结构
- 细计数时钟由起停型VCO产生
 - 振荡频率500 MHz \Diamond
 - ◇ 仅击中时产生功耗

► \triangleright ⊳

허> ᆋ う ー ⊶⊳ 허> ᆔ -D ⊶≻ ᆋ ~

 \triangleright

Digital Logic

总结

- ▶ MAPS探测器是STCF ITK重要备选方案之一
- ▶ 要求同时实现位置+时间+电荷测量
 - ◇ 位置分辨: ≤100µm
 - ◇功耗: ≤100*mW/cm*²→ 50*mW/cm*²
 - ◇ 单层无质量: ≤0.3% X₀
 - ◇时间分辨: ≤50ns → 5 ns
- ▶ MAPS设计
 - ◇基于TowerJazz180工艺完成原型验证芯片设计,并于2024.3提交流片
 - ◇ 基于Nexchip FCIS90和BCIS90完成原型验证芯片设计,并于2024.5提 交流片
 - ◇正在基于GSMC130nm工艺开展设计,计划2024.7提交流片

谢谢!

UNIVERSITY OF SCIENCE AND TECHNOLOGY OF CHINA

