

王大勇 北京大学

超级陶粲装置研讨会兰州大学, 2024年7月8日

B€SⅢ

BESIII physics: τ**-c region features**

- **Rich of resonances, charmonia and charmed mesons.**
- **D** Threshold characteristics (pairs of τ , D, D_s, charmed baryons...).
- **Transition** between perturbative and non-perturbative **QCD**.
- New hadrons: glueballs, hybrids, multi-quark states
- New Physics: large datasets, hermetic detector, good performance

2009: 106M ψ (2S) More than 52 fb⁻¹ $225M J/\psi$ 2010: 0.98 fb⁻¹ ψ (3770) (for $D^{0(+)}$) 2011: 2.93 fb⁻¹ ψ (3770) (for $D^{0(+)}$, total) 0.48 fb⁻¹@4.01 GeV 2012: 0.45B ψ (2S) (total) 1.30B J/ ψ (total) 2013: 1.09 fb⁻¹@4.23 GeV 0.83 fb⁻¹@4.26 GeV 0.54 fb⁻¹@4.36 GeV 10×0.05 fb⁻¹ XYZ scan@3.81-4.42 GeV 2014: 1.03 fb⁻¹@4.42 GeV 0.11 fb⁻¹@4.47 GeV 0.11 fb⁻¹@4.53 GeV 0.05 fb⁻¹@4.575 GeV 0.57 fb⁻¹ @4.60 GeV (for Λ_c^+) 0.80 fb⁻¹ R scan @3.85-4.59 GeV 2015: R-scan 2-3 GeV+2.175 GeV 2016: 3.20 fb⁻¹ @4.178 GeV (for D_s^+) 2017: 720,50 fb⁻¹ XYZ scan@4.19-4.27 GeV

Data samples by **BESIII** 2018: More J/ψ +tuning new RF cavity 2019: 10B J/ψ (total) 8×0.50 fb⁻¹ XYZ scan@4.13, 4.16, 4.29-4.44 GeV 2020: 3.8 fb⁻¹ @ 4.61-4.7 GeV (XYZ& Λ_c^+) 2021: 2.0 fb⁻¹ @ 4.74-4.946 GeV 2021: 2.7B ψ (2S) (total) 2022: 2×0.4 fb⁻¹@3.65, 3.682 GeV, 5.1 fb⁻¹ ψ (3770) (for $D^{0(+)}$, total) 2023: ~8 fb⁻¹ at ψ (3770) Latest data taken in 2024 runs: $\mathcal{L}_{int}/fb^{-1}$ E_{cm} / GeV days Dataset $\psi(3770)$ 3.773 4.2 119 ψ'' scan 3.780 0.41 9 0.14 in 14 points 3.800-3.885 6 scan ψ'' scan 3.768 0.41 10 0.13 3.554 4 χ_{c2} 1.80 - 2.00 $< 2 \, \text{GeV}$ 0.025 in 13 points 64

BESIII Publication

物理研究成果丰富

- "四夸克物质Zc(3900)的发现"荣获2023年度 国家自然科学奖二等奖
- (苑长征、朱科军、刘智青、李卫东、平荣刚等)
- BES上第6个国家自然科学奖二等奖 (1995, 2001, 2004, 2010, 2013, 2023)

Charmonium Physics with focus on "XYZ"s

2024/7/8 超级陶粲装置研讨会

X(3872) recent results

coupled channel analysis of the X(3872) line shape

Light hadron Physics: Spectroscopy and decay properties

Light hadrons with exotic quantum numbers

Observation of the $\pi_1(1600)$ in $\psi' \rightarrow \gamma \chi_{c1}, \chi_{c1} \rightarrow \pi^+ \pi^- \eta'$

- Spin-parity of the $\pi_1(1600)$
 - 1⁻⁺ assignment fit is better than that for 0⁺⁺, 2⁺⁺ or 4⁺⁺ assignments with significances well over 10σ
- Significance of the Breit-Wigner phase motion
 - Replace the resonant π₁(1600) with a non-resonant πη' P-wave described by – the Breit-Wigner function without _ phase motion
 - $f = \frac{1}{\sqrt{(m^2 s)^2 + m^2 \Gamma^2}}$
 - The fit yields that: $\Delta M = +6.9 \text{ MeV}/c^2$, $\Delta \Gamma = -96.4 \text{ MeV}$
 - We observed significant phase motion with a statistical significance greater than 10σ

Nominal PWA solution

 J^{PC} Decay mode Significance state $\pi^{\pm}\eta'$ 1^{-+} $\pi_1(1600)$ $>> 10\sigma$ 0^{++} $\pi^{\pm}n'$ $>> 10\sigma$ $(\pi\pi)_{S-wave}$ $a_0(980)$ 0^{++} $\pi^{\pm}\eta'$ $> 10\sigma$ 2^{++} $f_2(1270)$ $\pi^+\pi^ >> 10\sigma$ $\pi^{\pm}\eta'$ 2^{++} $a_2(1320)$ $> 5\sigma$ $f_2(1950)$ 2^{++} $\pi^+\pi^ > 10\sigma$ $f_0(2200)$ 0^{++} $\pi^+\pi^ > 10\sigma$ $a_0(1710)$ 0^{++} $\pi^{\pm}n'$ $> 10\sigma$ $f_2(PHSP)$ 2^{++} $\pi^+\pi^ > 5\sigma$

PWA of $\psi(3686) \rightarrow p\bar{p}\pi^0/\eta$

✓ Data can be well described with Several $N^* \& \rho^* / \omega^* / \phi^*$ states. ✓ Three lowest lying N^* is described with <u>KSU model</u>: $\Gamma(\sqrt{s}) = \Gamma_0 \times \sum r_i \times \frac{\rho_i(\sqrt{s})}{\rho_i(m_0)}$

 $\checkmark \Gamma_{N\eta}/\Gamma_{N\pi}$ is determined to be 0.99 \pm 0.05_{sta.} \pm 0.17_{sys.}

PWA of $\psi(3686) \rightarrow p\bar{p}\pi^0/\eta$

✓ The continuum background is subtracted based on PWA result @3.773 GeV

Resonance state	$N_{ m sig}$	$N_{ m con}$	$N_{ m net}$	$\epsilon~(\%)$	$\mathcal{B}(imes 10^{-6})$
$NR(\frac{1}{2}^+)$	122215 ± 3266	656 ± 164	121188 ± 3276	39.71	$113.9 \pm 3.1 \pm 11.0$
N(1440)	57118 ± 1383	953 ± 147	55627 ± 1402	38.34	$54.2 \pm 1.4 \pm 13.2$
N(1520)	8109 ± 428	870 ± 81	6749 ± 446	38.43	$6.6\pm0.4\pm1.8$
N(1535)	18894 ± 778	240 ± 77	18519 ± 787	39.61	$17.5\pm0.7\pm3.4$
N(1650)	11146 ± 794	278 ± 79	$2^{10712} \pm 804$	43.75	$9.1\pm0.7\pm2.4$
N(1710)	5043 ± 472	369 ± 100	4466 ± 497	39.73	$4.2\pm0.5\pm3.8$
N(1720)	6983 ± 523	217 ± 3 3	6644 ± 539	39.93	$6.2\pm0.5\pm1.9$
N(2100)	11107 ± 1033	55 12 161	10245 ± 1063	44.90	$8.5\pm0.9\pm3.8$
N(2300)	5633 ± 566	894 ± 222	4235 ± 664	43.75	$3.6\pm0.6\pm2.9$
N(2570)	27716 ± 1041	2349 ± 187	24043 ± 1082	46.14	$19.5 \pm 0.9 \pm 13.8$
			ad		
Resonance state	$N_{ m sig}$	$N_{ m con}$	Nnet N	$\epsilon~(\%)$	$\mathcal{B}(imes 10^{-6})$
N(1535)	20411 ± 460	570 ± 115	319486 ± 486	36.17	$50.5 \pm 1.3 \pm 7.0$
N(1650)	809 ± 310	388 ± 88 2	180 ± 341		
N(1710)	3351 ± 273	63 ±63	3250 ± 292	38.81	$7.8\pm0.7\pm1.8$
N(1895)	198 ± 50	7 0 - 3 2	83 ± 72		

BESII

Also hyperons...

详见: BESIII实验和STCF上的超子精细 测量 by 严亮

• Hyperons are the strange siblings of the proton and neutron

- Half lifes: $\tau_Y \sim 10^{-10}$ s
 - * Sensitivity loss $\sim 10^3$ w.r.t. to K^+ , K_L
- Rich phenomenology:
 - ★ Spin \rightarrow sensitivity to various NP structures
 - ★ *SU*(3)-relations to nucleon-structure
- Recent experimental "revolution" after 40⁺ yrs ...
- Polarized-hyperon factories (BESIII&SCTF)

▶ LHCb: 10²⁻³ more hyps than B's

Testing of P and CP Symmetries, X.G. He & J.P. Ma, *Phys.Lett.B* 839 (2023) 137834

New Physics Searches at Kaon and Hyperon Factories

Editors: Evgueni Goudzovski 1 , Diego Redigolo 2,3 , Kohsaku Tobioka 4,5 , Jure Zupan 6

Authors: Gonzalo Alonso-Álvarez⁷, Daniele S. M. Alves⁸, Saurabh Bansal⁶, Martin Bauer⁹, Joach Brod⁶, Veronika Chobanova¹⁰, Giancarlo D'Ambrosio¹¹, Alakabha Datta¹², Avital Dery¹³, France Dettori¹⁴, Bogdan A. Dobrescu¹⁵, Babette Döbrich¹⁶, Daniel Egana-Ugrinovic¹⁷, Gilly Elor¹⁸, Mi Escudero¹⁹, Marco Fabbrichesi²⁰, Bartosz Fornal²¹, Patrick J. Fox¹⁵, Emidio Gabrielli^{20,22,23},

Li-Si Yuva Kelly **Rept.Prog.Phys. 86 (2023) 1, 016201**

Kvedaraitė⁵, Gaia Lanfranchi⁴⁴, Danny Marfatia⁴², Jorge Martin Camalich^{45,44}, Diego Martínez Santos¹⁰, Karim Massri¹⁶, Patrick Meade⁴⁵, Matthew Moulson⁴¹, Hajime Nanjo⁴⁶, Matthias Neubo Maxim Pospelov^{31,32}, Sophie Renner², Stefan Schacht⁴⁷, Marvin Schnubel¹⁸, Rui-Xiang Shi^{25,48}, B Shuve⁴⁹, Tommaso Spadaro⁴¹, Yotam Soreq⁵⁰, Emmanuel Stamou⁵¹, Olcyr Sumensari⁵², Michele Tammaro⁵³, Jorge Terol-Calvo^{43,44}, Andrea Thamm⁵⁴, Yu-Chen Tung⁵⁵, Dayong Wang⁵⁶, Kei Yamamoto⁵⁷, Robert Ziegler⁵⁸

- More channels
- More complex analysis

More data samples in critical regions

2024/7/8 超级陶粲装置研讨会

Rich program with eta/eta' decays

Decay Mode	$\mathcal{B}(\times 10^{-4})$ [5]	n/n' events	· · · · · · · ·
			η decay mode physics highlight η' mode physics highlight
$J/\psi o \gamma \eta'$	51.5 ± 1.6	5.2×10^{7}	$\eta \to \pi^0 2\gamma$ ChPT $\eta' \to \pi\pi$ CPV
$J/\psi o \gamma\eta$	11.04 ± 0.34	1.1×10^{7}	$n \rightarrow \gamma B$ leptophobic dark boson $n' \rightarrow 2\gamma$ chiral anomaly
$J/\psi o \phi \eta'$	7.5 ± 0.8	7.5×10^{6}	$m \rightarrow 2\pi^0$ $m_i - m_d$ $n' \rightarrow 2\pi\pi$ how anomaly form factor
$J/\psi o \phi \eta$	4.5 ± 0.5	4.5×10^{6}	$\eta \rightarrow 5\pi$ m_a m_a $\eta \rightarrow \gamma\pi\pi$ box anomaly, form factor
	17.4 . 0.0	1 - 107	$\eta \to \pi^+ \pi^- \pi^0$ $m_u - m_d$, CV $\eta' \to \pi^+ \pi^- \pi^0$ $m_u - m_d$, CV
$J/\psi \to \omega \eta$	17.4 ± 2.0	1.7×10^{7}	$\eta \to 3\gamma$ CPV $\eta' \to \pi^0 \pi^0 \eta$ cusp effect [83]
$J/\psi ightarrow \omega \eta'$	1.82 ± 0.21	1.8×10^{6}	

R value and QCD studies

2024/7/8 超级陶粲装置研讨会

Fragmentation function measurement

$$\frac{1}{\sigma_{tot}}\frac{d\sigma(h+X)}{dx} = \sum_{i} \int_{X}^{1} \frac{dz}{z} C_{i}(z,\alpha_{S}(s),\frac{s}{\mu^{2}}) D_{i}^{h}(\frac{x}{z},\mu^{2})$$

- **Inclusive** π^0 /Ks/eta production in e+ e- collision at 2.2324, 2.400, 2.800, 3.050, 3.400, 3.671 GeV.
- broad z_h coverage from 0.1 to 0.9, best precision ■ provide brand new inputs in low-energy region to global fits of fragmentation function
 - More channels in progress

2024/7/8

超级陶粲装置研讨会

Charm Physics mesons and baryons

BDT score

Comparisons of f_{D^+} and $f_{D_s^+}$

Precision measurements of γ at LHCb and Belle II need input the strong phase differences of neutral D decays

Quantum-correlated $e^+e^- \rightarrow \psi(3770)$ $\rightarrow D^0 \overline{D}^0$ pairs at BESIII offer an ideal opportunity to extract the strong phase differences between D^0 and \overline{D}^0

In the future 10-15 years, the statistical uncertainties of the γ measurements will reach at ~1.5° and 0.4° at Belle II and LHCb upgrade

The constraint on the γ measurement before BESIII is only 2°. Improved measurements of strong phase differences are highly desirable

Hadronic D_s^+ decays: Amplitude analyses

D_s^\pm Amplitude analyses

$D_s^+ o K^+ K^- \pi^+$ partial wave analyses	Phys. Rev. D 104 (2021) 012016
$D_s^+ o K^+ K_S \pi^0$ partial wave analyses	Phys. Rev. Lett. 129 (2022) 182001
$D_s^+ ightarrow$ 2 $\pi^+\pi^-$ partial wave analyses	Phys. Rev. D 106 (2022) 112006
$D_s^+ ightarrow$ 2 $\pi^+\pi^-\eta$ partial wave analyses	Phys. Rev. D 104 (2021) L071101
$D_s^+ o \pi^+ \pi^0 \eta^{\ \prime}$ partial wave analyses.	JHEP 04 (2022) 058
$D_s^+ o \pi^+$ 2 π^0 partial wave analyses.	JHEP 01 (2022) 052
$D_s^+ o K^+ \pi^+ \pi^-$ partial wave analyses	JHEP 08 (2022) 196
$D_s^+ o K^+ \pi^+ \pi^- \pi^0$ partial wave analyses	JHEP 09 (2022) 242
$D_s^+ ightarrow$ 2 $K_S^0 \ \pi^+$ partial wave analyses	Phys. Rev. D 105 (2022) L051103
$D_s^+ o K_S^0 \; K^-$ 2 π^+ partial wave analyses	Phys. Rev. D 103 (2021) 092006
$D^+_s o K^- K^+ \pi^+ \pi^0$ partial wave analyses	Phys. Rev. D 104 (2021) 032011
$D_s^+ o K^- K^+$ 2 $\pi^+\pi^-$ partial wave analyses	JHEP 07 (2022) 051
Amplitude analysis of $\ D_s^+ o K_S^0 \pi^+ \pi^0$	JHEP 06 (2021) 181
Amplitude analysis of $D_s^+ \to \pi^+ \pi^0 \eta$	Phys. Rev. Lett. 123 (2019) 112001

PRL129, 182001 (2022)

14 published results already in PDG Many others are ongoing

$$D_{s}^{+} \to \pi^{+} \pi^{+} \pi^{-} \pi^{0}$$
$$D_{s}^{+} \to \pi^{+} \pi^{+} \pi^{-} \pi^{0} \pi^{0}$$
$$D_{s}^{+} \to \pi^{+} \pi^{0} \pi^{0} \eta$$
$$D_{s}^{+} \to K_{s}^{0} K^{+} \pi^{+} \pi^{-}$$

There are also many 3- and 4-body Amplitude analyses for D⁺ and D⁰

$Ds^+ \rightarrow \pi^+\pi^-\pi^0$

Component		Phase (rad)	FF (%)	BF (10^{-3})
$f_0(1370) ho^+$	10 sigma	0.0(fixed)	$24.9\pm3.8\pm2.1$	$5.08 \pm 0.80 \pm 0.43$
$f_0(980)\rho^+$	TO Sigma	$3.99 \pm 0.13 \pm 0.07$	$12.6 \pm 2.1 \pm 1.0$	$2.57 \pm 0.44 \pm 0.20$
$f_2(1270) ho^+$		$1.11 \pm 0.10 \pm 0.10$	$9.5\pm1.7\pm0.6$	$1.94 \pm 0.36 \pm 0.12$
$(ho^+ ho^0)_S$		$1.10 \pm 0.18 \pm 0.10$	$3.5\pm1.2\pm0.6$	$0.71 \pm 0.25 \pm 0.12$
$(ho(1450)^+ ho^0)_S$		$0.43 \pm 0.18 \pm 0.17$	$4.6\pm1.3\pm0.8$	$0.94 \pm 0.27 \pm 0.16$
$(ho^+ ho(1450)^0)_P$		$4.58 \pm 0.16 \pm 0.09$	$8.6\pm1.3\pm0.4$	$1.75 \pm 0.27 \pm 0.08$
$\phi((ho\pi) ightarrow \pi^+\pi^-\pi^0)\pi^+$		$2.90 \pm 0.15 \pm 0.18$	$2.90 \pm 0.15 \pm 0.18 \qquad 24.9 \pm 1.2 \pm 0.4$	
$\omega((ho\pi) o \pi^+\pi^-\pi^0)\pi^+$		$3.22 \pm 0.21 \pm 0.09$	$6.9\pm0.8\pm0.3$	$1.41 \pm 0.17 \pm 0.06$
$a_{1}^{+}(\rho^{0}\pi^{+})_{S}\pi^{0}$		$3.78 \pm 0.16 \pm 0.12$	$12.5\pm1.6\pm1.0$	$2.55 \pm 0.34 \pm 0.20$
$a_1^0((ho\pi)_S o \pi^+\pi^-\pi^0)\pi^+$		$4.82 \pm 0.15 \pm 0.12$	$6.3\pm1.9\pm1.2$	$1.29 \pm 0.39 \pm 0.24$
$\pi (1300)^0 ((ho \pi)_P o \pi^+ \pi^- \pi^0) \pi^+$		$2.22 \pm 0.14 \pm 0.08$	$11.7\pm2.3\pm2.2$	$2.39 \pm 0.48 \pm 0.45$

Arxiv:2406.17452

$$\mathcal{B}(D_s^+ \to \pi^+ \pi^- \pi^0|_{\text{non}-\eta}) = (2.04 \pm 0.08_{\text{stat.}} \pm 0.05_{\text{syst.}})\%$$
$$\mathcal{B}(D_s^+ \to \eta \pi^+) = (1.56 \pm 0.09_{\text{stat.}} \pm 0.04_{\text{syst.}})\%$$

$$\frac{\mathcal{B}(\phi(1020) \to \pi^+ \pi^- \pi^0)}{\mathcal{B}(\phi(1020) \to K^+ K^-)} = 0.230 \pm 0.014_{\text{stat.}} \pm 0.010_{\text{syst}}$$

deviates from the world average value by more than 4σ

BESIT Studies on Λ_c^+ leptonic decays

Determination of form factors of $\Lambda_c^+ \rightarrow \Lambda e^+ \nu_e$

First direct comparisons on differential DRs and FFs with LQCD

Observation of $\Lambda_c^+ \rightarrow p K^- e^+ \nu$

PRD106,112010(2022)

- Second leptonic decay of Λ_c^+ is observed!
- Good channel to study Λ excited states, $\Lambda(1405)$, $\Lambda(1520)$

2024/7/8

超级陶粲装置研讨会

Exotic Decays and New Physics

Search for rare/forbidden phenomena

BEST

The upgrade: BEPCII-U

- An upgrade of BEPCII (BEPCII-U) has been approved in July 2021: the optimized energy is 2.35 GeV with luminosity 3 times higher than current BEPCII and extend the maximum energy to 5.6 GeV
- ✓ With this critical energy increase and lumi upgrade, the operation is secured for another 5-10 years

参见:

BEPCII-U进展 Yuan Zhang

✓ BESIII Detector: inner tracker upgrade (CGEM), but No big change of performance foreseen

Planned future data set

Table 7.1: List of data samples collected by BESIII/BEPCII up to 2019, and the proposed samples for the remainder of the physics program. The most right column shows the number of required data taking days in current ($T_{\rm C}$) or upgraded ($T_{\rm U}$) machine. The machine upgrades include top-up implementation and beam current increase.

Energy	Physics motivations	Current data	Expected final data	$T_{ m C}$ / $T_{ m U}$
√1.8 - 2.0 GeV	R values	N/A	$0.1 { m ~fb^{-1}}$	60/50 days
	Nucleon cross-section		(fine scan)	
2.0 - 3.1 GeV	R values	Fine scan	Complete scan	250/180 days
	Cross-sections	(20 energy points)	(additional points)	
J/ψ peak	Light hadron & Glueball	$3.2 {\rm ~fb^{-1}}$	$3.2 f_0^{-1}$	N/A
×	J/ψ decays	(10 billion)	(10 billion) fin	isbed in 2024
$\psi(3686)$ peak	Light hadron & Glueball	$0.67 { m ~fb^{-1}}$	4.5 fb^{-1}	100/00 4495
\checkmark	Charmonium decays	(0.45 billion)	(3.0 billion)	
$\sqrt{\psi(3770)}$ peak	D^0/D^{\pm} decays	$2.9 { m fb}^{-1}$	20.0 fb^{-1}	$610/360 \mathrm{~days}$
$3.8 - 4.6 \mathrm{GeV}$	R values	Fine scan	No requirement	N/A
	XYZ/Open charm	(105 energy points)		
$4.180 { m GeV}$	D_s decay	$3.2 {\rm ~fb^{-1}}$	$6 {\rm fb}^{-1}$	140/50 days
	XYZ/Open charm			
	XYZ/Open charm			
4.0 - 4.6 GeV	Higher charmonia	16.0 fb^{-1}	$30 { m ~fb^{-1}}$	$770/310 {\rm days}$
	cross-sections	at different \sqrt{s}	at different \sqrt{s}	
4.6 - 4.9 GeV	Charmed baryon/ XYZ	$0.56 { m ~fb^{-1}}$	$15 { m fb}^{-1}$	1490/600 days
	cross-sections	at $4.6 \mathrm{GeV}$	at different \sqrt{s}	
$4.74 \mathrm{GeV}$	$\Sigma_c^+ \bar{\Lambda}_c^-$ cross-section	N/A	$1.0 {\rm ~fb^{-1}}$	100/40 days
$4.91 \mathrm{GeV}$	$\Sigma_c \overline{\Sigma}_c$ cross-section	N/A	$1.0 {\rm ~fb^{-1}}$	120/50 days
$4.95 \mathrm{GeV}$	Ξ_c decays	N/A	$1.0 {\rm ~fb^{-1}}$	130/50 days

Future Physics Programme of BESIII

Chinese Physics C Vol. 44, No. 4 (2020)

Abstract: There has recently been a dramatic renewal of interest in hadron spectroscopy and charm physics. This renaissance has been driven in part by the discovery of a pichtors of charmonium-like X7Z tates at BESHI and B factories, and the observation of an intripuing proton-antiproton threshold enhancement and the possibly related X(1455) mecon state at BESHI, as well as the threshold measurements of charm mesons and charm haryoon. We present a detailed survey of the important topics in trans-tharm physics and hadron physics that can be further explored at BESHI during the remaining operation period of BEPCII. This survey will holg in the optimization of the data-taking plan over the coming years, and puvides physics metivation for the possible upgrade of BEPCII to higher luminosity.

DOI: 10.1088/1674-1137/44/4/040001

Received 25 December 2019, Published online 26 March 2020 Summered in cost by National View Brain Research Parameter

Important in pure by National Kay, Bone, Enverse Programs of Chain (2015):2814/9719, National National National Tolinous Production of Chain (2015):2814/2814
 Stephysik (1915):2814, 1915244, 1915244, 1915244, 1915244, 19154
 Stephysik (1915):2814, 1915244, 1915244, 1915244, 191544, 1916

Control from the volt way to used under the turns of the Crastive Common Arthodom 5 Disease. Any Enter distribution of the web, jurgent obtained and the turns of the Crastive Common Arthodom 5 Disease. Any Enter distribution of the Polyine Arthodom 5 Disease A

Future Physics Programme of BESIII (white book)

Chin. Phys. C 44, 040001 (2020) arXiv:1912.05983

- Cover all the ground-state charmed baryons:
 - production
 - decays
 - CPV search
- **Other possibilities to further explore**

Detailed studies of known $Z_{c(s)}$ states and search for more exotic states in higher Ecm

- Identify vector charmonium(-like) states from 4.0 to 5.6 GeV
- More Zc and Zcs for PWA
- Search for Zc radiative transition to X(3872)
- Search for penta-quark states

BESII

Summary

- BESIII is operating with good performance
 - collect large data samples of >52/fb in the energy range 1.84~4.95 GeV
- BESIII has performed wide range of physics studies
 - Light hadron spectroscopy and decays
 - Charmonia transitions and XYZ
 - R value and QCD studies
 - Charmed meson and charmed baryon
 - Rare decays and new physics search
- BESIII still has great potential
 - Near term: with unique datasets and analysis techniques.
 - Midterm: Operation for another 5-10 years foreseen
 - BEPCII-U: 3x upgrade on luminosity, with energy to 5.6GeV
- STCF is the natural further next step. Bright future is ahead !