Status of STCF Offline Software

Xingtao Huang (黄性涛)¹, <u>Xiaocong Ai (艾小聪)</u>? on behalf of the STCF Software Group

1. Shandong University

2. Zhengzhou University

2024年超级陶粲装置研讨会,**2024**年**7**月**8**日**,** 兰州

The crucial role of HEP offline software

HEP offline software is about physics discoveries

HEP offline software is about detectors

- To **guide** the design of often very sophisticated detectors
- To **exploit** (i.e. not to spoil) the maximum performance of the detectors
- To **detect** possible defects, malfunction, aging ... of the detectors

→ See A. Guo's talk about FicC. detector optimization **→** See L. Wu' talk about BESIII detector alignment

Physics requirements of STCF

Requirements of offline software at STCF

Higher event rate, background, CPU consumption at STCF than BESIII → i.e. we need **reconstruct** the tracks and photon **with good efficiency and resolution**, and **identify** them **at high accuracy**, with **good speed**

Particles at STCF

- Charged particles
	- e, μ, K, π, proton (most have $p < 2$ GeV, lots have $p < 400$ MeV)
- **Neutral particles**
	- \circ γ (energy coverage: 25 MeV 3.5 GeV) and K_L, neutron (up to 1.6 GeV)

The detector and performance requirements

ITK

 \bullet Material < 0.01 X0, $\sigma_{xy}^{}$ < 100 um

MDC

- Material $<$ 0.05 X0
- \bullet **σ**_{$\frac{1}{20}$} < 130 um, **σ**_p/p < 0.5% at 1 GeV/c
- $d\hat{E}/dx$ resolution < 6%

RICH & **DTOF**

PID $π/K$ PID efficiency $>$ 97% up to 2 GeV/c @mis-ID rate 2%

EMC

 \bullet σ_{E} < 2.5%, σ_{pos} < 5 mm, σ_{t} < 300 ps @ 1 GeV

MUD

 μ PID efficiency > 95% with π→ μ mis-ID rate $<$ 3.3% @ p = 1 GeV/c 8

STCF offline software

The Offline Software of Super Tau-Charm Facility (OSCAR)

● Provides common functionalities for **detector design**, **offline event simulation**, **reconstruction**, **calibration** and **physics analysis** at STCF

OSCAR Core Software features

- Underlying event loop control using **SNiPER** (adopted also by JUNO, LHAASO, nEXO, HERD)
- Event Data Model (EDM) based on **podio** (key4hep adopted by CEPC, ILC, FCC…)
- Detector description using **DD4hep**
- Supports **multithreading**, **Machine Learning** and **heterogeneous computing**
- Supports **event display**, database, tests…

More details about core software in T. Li's talk and event display in Q. Zhang's talk

Event processing workflow with OSCAR

- A full chain of simulation + digitization + reconstruction + analysis has been established
- ML techniques exploited in simulation, reconstruction and analysis

My talk is non-exhaustive and focus more on performance

STCF tracking performance

STCF tracking challenges

- \bullet Most physics processes have charged particles with $p_T < 500$ MeV/c
	- \circ More material effects \rightarrow worse resolution
	- \circ Looping tracks with p_{T} < 130 MeV/c \rightarrow fake/duplicate tracks
- High backgrounds and noise \rightarrow worse efficiency and resolution
- Long-lived particles (non-trivial task in all HEP experiments!)

Dashed lines denote functionalities to be integrated into OSCAR ¹⁵

Track finding with Hough Transform

Track finding efficiency

- Tracking efficiency is **above 95%** in central region for $p_{T}^{}$ > 100 MeV/c, even with backgrounds
- 17 99% noise hits can be removed by GNN (except first/secondary long tracks backgrounds)

Track parameters resolution

W/O backgrounds

- Tracking resolution for low p_{τ} looping tracks has been improved:
	- e.g. using only hits from first half loop, optimized GenFit workflow

More about GenFit track fitting in Z. Lu's talk

STCF photon performance

Photon performance

More details in B. Wang's talk

The expected performance with backgrounds meet the physics requirements

STCF PID performance

RICH reconstruction

- Different distribution of number of cherenkov photons for different particles
- For each particle hypothesis h, log-likelihood defined as

$$
\ln \mathcal{L}_h = \sum_{signal} \ln(PDF_{Ckv} + PDF_{Bkg})
$$

simplified from Poisson

- PDF_{CKV} is calculated on-the-fly based on extrapolated track momentum/position
- $DLL_{\pi K} = \ln \mathcal{L}_{\pi} \ln \mathcal{L}_{K}$ provides particle ID 23

More details in Q. Huang's talk

π/K PID efficiency with RICH

- 97% π/K PID efficiency for 0.7 GeV < p < 2 GeV with θ > 74**°**
- PID Efficiency for 2 GeV with smaller θ is less satisfactory

DTOF reconstruction More details in Y. Feng's talk

- Timing method (TOF): $L_h = \prod_{i=1}^{N_{p,e}} N_h S_h (TOF_i) + B$
- Image method (Time vs Position) has better performance :

25

π/K PID efficiency with DTOF (Image method)

More details in Y. Feng's talk

● > 97% π/K PID efficiency for 0.35 GeV < p < 2 GeV with 24**°** < θ < 35**°**

π/K PID efficiency with DTOF (CNN method)

More details in Z. Yao's talk

- Using 2D map of TOF vs. channel as inputs
	- Momentum and position extrapolated to DTOF fully connected layer
- \bullet π /K PID efficiency ~99% @ p = 2.0 GeV/c (backgrounds not considered yet)

, W/O backgrounds **π PID efficiency** @2% K→ π mis-ID rate,

CNN might further improve performance at large theta and p

MUD reconstruction

- Associate MUD hits/clusters to:
	- charged tracks based on extrapolated track position & momentum
	- n/K_L based on their ECAL showers
- Fine-binned BDT training using tracking + EMC
	- + MUD reco features

PID eff. binned - PID eff. unbinned

BDT features

μ/π PID efficiency with MUD

More details in Y. Liu's talk

- $>95\%$ μ PID efficiency for p > 1.2 GeV
- Needs optimization for lower momentum

Theta [deg]

29

(n, KL)/γ PID efficiency with MUD

● Still very preliminary. Below 70% for now. >95% is expected.

Global PID using BDT

- Using **45 features from Tracker/dEdx/RICH/DTOF/EMC/MUD**
- PID efficiency above 95% for other particles except π

Backgrounds not considered yet

Global PID performance

- K/p (误鉴别<2%): ٠
	- P < 0.4 Gev/c: PID 效率 > 80% \circ
	- P直到 2Gev/c: PID 效率>95% \circ

- K/π (误鉴别<2%): ٠
	- P < 0.8 Gev/c: PID 效率~97% \circ
	- 动量大于1.5Gev/c: PID 效率~95% \circ

More details in Y. Zhai's talk

- $μ/π$ (误鉴别<2%): \bullet
	- PID 效率:>60% \circ

STCF Analysis tools performance

Vertex fit

● Vertex fit transcribed from BESIII has been validated

34

Kinematic fit

- Kinematic fit transcribed from BESIII has been validated
- GlobalVertexFit which combines vertex and kinematic fit has been transcribed from Belle-II recently. Validation is in progress.

Status of the full event processing chain

S Finalised Working, under optimization (a) Developing or not started

Summary

- Much progress has been made towards building **a full event processing chain** for STCF in the past year
	- Background simulation + mixing, digitization, reconstruction optimization…
- **Good tracking, photon and PID performance already achieved** based on both **traditional** and **innovative ML** techniques
	- Still room for improvement in certain phase space region
- STCF **physics simulation studies in a realistic scenario** has started
- Currently, in full swing for both **physics and CPU optimization** to facilitate further **detector optimization**
	- Combination of different techniques/algorithms is the key for improvement

backup

40

MUD digitization

 \Diamond MUD:

◇旧版几何: 模拟+数字化框架已经搭建,数字化参数需要更新 ◇新版几何:模拟算法已经完成,数字化算法开发中

MC 样本 \ast

- Oscar 版本: 2.5.0
- GeV ٠
- ٠ **J/ψ →** ⍴**π**

$*$ 事例选择

- 带电径迹的选择
	- o $N_{\text{good charge track}} = 2$
	- Total charge=0 \circ
- 中性径迹的判断 \bullet
	- \circ 桶部光子 Ey>25MeV (|cosθ|<0.8)
	- \circ 端盖光子 Ey>50MeV (0.86<|cos0|<0.92)

1800

1400

1200

1000

noc

400

200

Jpsi

Entries of Belorefit: 9473

Mean of Reforefit: 3.050358

Error at Betorefit: 0.138054

Entries of Alterfit: 9473

Mean of Afterfit: 3.097000

Error of Afterfit: 0.000024

- \bullet $N_{\text{good neutral track}} > 2$
- **Global PID** ٠
	- 。 判选条件
- 顶点拟合 & 运动学拟合 \bullet
	- $x^2 > 200$

Entries of Beforefit 9473

Mean of Belgrefit: 0.210110

Error of Beforefit: 0.136529

Entries of Afterfit: \$473

Mean of Attentit: 0.219724

Empr of Afterfit: 0.143019

 600

500

 400

300

200

100

Mass

效率检查(初步结

 \ast

3000

2500

2000

1500

1000

Massee

41

Mass

Entries of Beforefit 9473

Mean of Beforefit: 0.004595

Emor of Beforatt: 0.190301

Entries of Afterfit: 9473

Mean of Attentit: 0.796800

Error of Afterfit: 0.170996

- 探测器模拟,相互作用模拟部分耗时
- 物理过程: e+e- --> j/psi µ+µ --> $\pi^+ \pi^- \mu^+ \mu^-$
- 单线程
- 关闭光吸收电离
- 模拟总耗时: ~1s/event

- 数字化 + 重建耗时
- 物理过程: e+e- --> j/psi µ+µ: --> π + \overline{x} μ^{μ}

\n- よ
$$
ikff
$$
 9.7s/event
\n