Status of STCF Offline Software

Xingtao Huang (黄性涛)¹, <u>Xiaocong Ai (艾小聪)</u>² on behalf of the STCF Software Group

1. Shandong University

2. Zhengzhou University

2024年超级陶粲装置研讨会, 2024年7月8日, 兰州

The crucial role of HEP offline software

HEP offline software is about physics discoveries

HEP offline software is about detectors

- To guide the design of often very sophisticated detectors
- To **exploit** (i.e. not to spoil) the maximum performance of the detectors
- To **detect** possible defects, malfunction, aging ... of the detectors

See A. Guo's talk about EicC detector optimization
See L. Wu' talk about BESIII detector alignment

Geometry of the STCF detector

Physics requirements of STCF

Requirements of offline software at STCF

Higher event rate, background, CPU consumption at STCF than BESIII \rightarrow i.e. we need **reconstruct** the tracks and photon **with good efficiency and resolution**, and **identify** them **at high accuracy**, with **good speed**

Process	Physics Interest	Optimized	Requirements
		Subdetector	1
$ au o K_s \pi \nu_{ au},$	CPV in the τ sector,		acceptance: 93% of 4π ; trk. effi.:
$J/\psi ightarrow \Lambda ar{\Lambda},$	CPV in the hyperon sector,	ITK+MDC	$> 99\%$ at $p_T > 0.3$ GeV/c; $> 90\%$ at $p_T = 0.1$ GeV/c
$D_{(s)}$ tag	Charm physics		$\sigma_p/p = 0.5\%$, $\sigma_{\gamma\phi} = 130 \mu\text{m}$ at 1 GeV/c
$e^+e^- \rightarrow KK + X,$	Fragmentation function,	BID	π/K and K/π misidentification rate < 2%
$D_{(s)}$ decays	CKM matrix, LQCD etc.	PID	PID efficiency of hadrons > 97% at $p < 2$ GeV/c
$\tau \rightarrow \mu \mu \mu, \tau \rightarrow \gamma \mu,$	cLFV decay of τ ,		μ/π suppression power over 30 at $p < 2$ GeV/c,
$D_s ightarrow \mu u$	CKM matrix, LQCD etc.	PID+MOD	μ efficiency over 95% at $p = 1$ GeV/c
$ au o \gamma \mu$,	cLFV decay of τ ,	EMC	$\sigma_E/E \approx 2.5\%$ at $E = 1 \text{ GeV}$
$\psi(3686)\to\gamma\eta(2S)$	Charmonium transition	EMC	$\sigma_{\rm pos} \approx 5 \text{ mm}$ at $E = 1 \text{ GeV}$
$e^+e^- \rightarrow n\bar{n},$	Nucleon structure	EMCIMUD	$\sigma_{\rm m} = -\frac{300}{100}$ ns
$D_0 \rightarrow K_L \pi^+ \pi^-$	Unity of CKM triangle	EMC+MUD	$\sigma_T = \frac{1}{\sqrt{p^3 (\text{GeV}^3)}} \text{ ps}$

Particles at STCF

- Charged particles
 - e, μ, Κ, π, proton (most have p < 2 GeV, lots have p < 400 MeV)
- Neutral particles
 - $\circ~\gamma$ (energy coverage: 25 MeV 3.5 GeV) and K $_{\rm I}$, neutron (up to 1.6 GeV)

The detector and performance requirements

ITK

Material < 0.01 X0, σ_{xy} < 100 um

MDC

- Material < 0.05 X0
- σ_{xy} < 130 um, σ_p/p < 0.5% at 1 GeV/c dE/dx resolution < 6%

RICH & DTOF

PID π /K PID efficiency > 97% up to 2 GeV/c @mis-ID rate 2%

EMC

 $\sigma_{\rm E}^{}$ < 2.5%, $\sigma_{\rm pos}^{}$ < 5 mm, $\sigma_{\rm t}^{}$ < 300 ps @ 1 GeV

MUD

 μ PID efficiency > 95% with $\pi \rightarrow \mu$ mis-ID rate < 3.3% (a) p = 1 GeV/c

<u>STCF offline software</u>

The Offline Software of Super Tau-Charm Facility (OSCAR)

 Provides common functionalities for detector design, offline event simulation, reconstruction, calibration and physics analysis at STCF

OSCAR Core Software features

- Underlying event loop control using SNiPER (adopted also by JUNO, LHAASO, nEXO, HERD)
- Event Data Model (EDM) based on podio (key4hep adopted by CEPC, ILC, FCC...)
- Detector description using DD4hep
- Supports multithreading, Machine Learning and heterogeneous computing
- Supports event display, database, tests...

More details about core software in T. Li's talk and event display in Q. Zhang's talk

Event processing workflow with OSCAR

- A full chain of simulation + digitization + reconstruction + analysis has been established
- ML techniques exploited in simulation, reconstruction and analysis

My talk is non-exhaustive and focus more on performance

STCF tracking performance

STCF tracking challenges

- Most physics processes have charged particles with p_{τ} < 500 MeV/c
 - $\circ \quad \text{More material effects} \rightarrow \text{worse resolution}$
 - \circ Looping tracks with $p_{\rm T}$ < 130 MeV/c \rightarrow fake/duplicate tracks
- High backgrounds and noise \rightarrow worse efficiency and resolution
- Long-lived particles (non-trivial task in all HEP experiments!)

Dashed lines denote functionalities to be integrated into OSCAR

Track finding with Hough Transform

Track finding efficiency

- Tracking efficiency is above 95% in central region for p_T > 100 MeV/c, even with backgrounds
- 99% noise hits can be removed by GNN (except first/secondary long tracks backgrounds)

Track parameters resolution

W/O backgrounds

 Tracking resolution for low p_T looping tracks has been improved:

 e.g. using only hits from first half loop, optimized GenFit workflow

More about GenFit track fitting in Z. Lu's talk

STCF photon performance

Photon performance

More details in B. Wang's talk

• The expected performance with backgrounds meet the physics requirements

STCF PID performance

RICH reconstruction

- Different distribution of number of cherenkov photons for different particles
- For each particle hypothesis h , log-likelihood defined as

$$\ln \mathcal{L}_{h} = \sum_{signal} \ln(PDF_{Ckv} + PDF_{Bkg})$$

simplified from Poisson

- PDF_{Ckv} is calculated on-the-fly based on extrapolated track momentum/position
- $DLL_{\pi K} = \ln \mathcal{L}_{\pi} \ln \mathcal{L}_{K}$ provides particle ID

More details in Q. Huang's talk

π/K PID efficiency with RICH

- 97% π /K PID efficiency for 0.7 GeV \theta > 74°
- PID Efficiency for 2 GeV with smaller θ is less satisfactory

DTOF reconstruction More details in Y. Feng's talk

- Timing method (TOF): $L_h = \prod_{i=1}^{N_{p.e.}} N_h S_h(TOF_i) + B$
- Image method (Time vs Position) has better performance :

25

π/K PID efficiency with DTOF (Image method)

More details in Y. Feng's talk

• > 97% π/K PID efficiency for 0.35 GeV \theta < 35°

π/K PID efficiency with DTOF (CNN method)

More details in Z. Yao's talk

- Using 2D map of TOF vs. channel as inputs
 - Momentum and position extrapolated to DTOF fully connected layer
- π/K PID efficiency ~99% (a) p = 2.0 GeV/c (backgrounds not considered yet)

π PID efficiency (a)2% $K \rightarrow \pi$ mis-ID rate, W/O backgrounds

CNN might further improve performance at large theta and p

MUD reconstruction

- Associate MUD hits/clusters to :
 - charged tracks based on extrapolated track position & momentum
 - \circ n/K₁ based on their ECAL showers
- Fine-binned BDT training using tracking + EMC
 - + MUD reco features

PID eff. binned - PID eff. unbinned

TrackInfo	ClusterInfo
MomentumMag	SeedTheta
SeedTheta	SeedPhi
SeedPhi	DeltaTheta
DeltaTheta	DeltaPhi
DeltaPhi	LargestDistance
LargestDistance	Velocity
Velocity	MaxHitLayer
MaxHitLayer	MaxHit
MaxHit	LastLayer
LastLayer	PSHitCenter
HitAverageDistance	LowHitCenter
HitEntries	HitEntries
HitInRPC	HitInRPC
HitInPS	HitInPS
TrackType	PSHitNorm1
TrackQuality	PSHitNorm2
EcalEnergy	TrackType
EcalSeedEnergy	EcalEnergy
ESeed/E3x3	EcalSeedEnergy
ESeed/E5x5	ESeed/E3x3
E3x3/E5x5	ESeed/E5x5
EcalDev	E3x3/E5x5
	EcalDev

BDT features

1500

More details in Y. Liu's talk

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

67.6

1000

20

500

92.3 92.8 92.8

2500

1 97.5 98.5 99.0

2000

29

(n, K_L)/ γ PID efficiency with MUD

• Still very preliminary. Below 70% for now. >95% is expected.

Global PID using BDT

- Using 45 features from Tracker/dEdx/RICH/DTOF/EMC/MUD
- PID efficiency above 95% for other particles except π

Backgrounds not considered yet

Global PID performance

- K/p(误鉴别<2%):
 - P < 0.4 Gev/c: PID 效率 > 80%
 - P直到 2Gev/c: PID 效率 > 95%

K/π(误鉴别<2%):

0

。 P < 0.8 Gev/c: PID 效率~97%

动量大于1.5Gev/c: PID 效率~95%

0.8 π^{-} 20.6 Efficie 0.4 0.2 0.02 2.5 0.5 1.5 P 0.8 π^{-} Efficiency 0.4 0.2 0.02

- More details in Y. Zhai's talk
 - μ/π (误鉴别 <2%):
 - PID 效率:>60%

STCF Analysis tools performance

Vertex fit

• Vertex fit transcribed from BESIII has been validated

34

Kinematic fit

- Kinematic fit transcribed from BESIII has been validated
- GlobalVertexFit which combines vertex and kinematic fit has been transcribed from Belle-II recently. Validation is in progress.

Invariant mass of J/ψ

Status of the full event processing chain

Working, under optimization

Developing or not started

				Reconstruction		Analysis (W/O bkgs)		
		Simulati on	Digitizati on	On top of Digitization	On top of Bkgs + Digitization	Global PID Charged	Global PID Neutral	Vertex/Ki nematic Fit
	ITK					1) Single	1) Single	
	MDC					particles		
	RICH					2) Dhysics	2) Physics	
	DTOF					Processes	Processes	
	ECAL				\bigcirc			
MUD	Pre-geometry							
	New geometry							3

Summary

- Much progress has been made towards building a full event processing chain for STCF in the past year
 - Background simulation + mixing, digitization, reconstruction optimization...
- Good tracking, photon and PID performance already achieved based on both traditional and innovative ML techniques
 - Still room for improvement in certain phase space region
- STCF physics simulation studies in a realistic scenario has started
- Currently, in full swing for both **physics and CPU optimization** to facilitate further **detector optimization**
 - Combination of different techniques/algorithms is the key for improvement

backup

40

MUD新版几何

MUD digitization

♦MUD:

◇旧版几何:模拟+数字化框架已经搭建,数字化参数需要更新◇新版几何:模拟算法已经完成,数字化算法开发中

MC 样本 *

- Oscar 版本: 2.5.0 .
- GeV .
- Exclusive MC : $J/\!\!/\psi \rightarrow \rho \pi$.

* 事例选择

- 带电径迹的选择 .
 - 0 N good charge track = 2
 - 0 Total charge=0
- 中性径迹的判断 .
 - 0 桶部光子 Ey>25MeV (|cosθ|<0.8)
 - 0 端盖光子 Ey>50MeV (0.86<|cos0|<0.92)

- 0 N good neutral track > 2
- Global PID .
 - 判选条件
- 顶点拟合&运动学拟合 .
 - ^ο χ² > 200

07	/08/2	202	4		

	选择条件 果)	事例数目	效率
$ ightarrow ho\pi$	事例数目	24000	
	带电径迹	14217	59.24%
GlobalPID 软件包可以	中性径迹	14214	99.98%
提供良好的鉴别能力	带正电的径迹鉴别为 pion	12477	88.70%
	带负电的径迹鉴别为 pion	12411	88.10%
osθ <0.8)	两条径迹都鉴别为 pion	10869	78.02%
.00~ c050 ~0.32)	顶点拟合 & 运动学拟合	9473	66.65%
		-	—

效率检查(初步结

*

子探测器	每事例耗时(ms)	占比
ITK	67	16.6%
MDC	24	6.0%
RICH	46	11.4%
DTOF	130	32.3%
ECAL	55	13.6%
MUD	136	33.7%
ALL	403	100%

- 探测器模拟,相互作用模拟部分耗时
- 物理过程: e+e- --> j/psi μ⁺μ⁻ --> π⁺πμ⁺μ⁻
- 单线程
- 关闭光吸收电离
- 模拟总耗时: ~1s/event

算法	每事例耗时 (ms)	标准差 (ms)	占比
ITK 数字化(简化)	0.48	0.95	0.00%
MDC 数字化(简化)	1.05	1.35	0.01%
ECAL 数字化	186.57	100.18	1.92%
RICH 数字化(简化)	3.28	0.55	0.03%
DTOF 数字化(简化)	0.51	3.87	0.01%
MUD 数字化(简化)	2.28	0.58	0.02%
ITK Cluster 重建	0.04	0.04	0.00%
MDC Hit 重建	0.44	0.13	0.00%
Hough Finder	404.52	306.1	4.16%
径迹拟合(to debug)	6657.52	14872.14	68.60%
dE/dx 重建	2.05	0.51	0.02%
径迹外推	206.98	38.61	2.13%
ECAL 重建	0.32	0.89	0.00%
RICH 重建 (to optimize)	2187.43	761.16	22.54%
DTOF 重建	38.41	62.97	0.40%
MUD 重建	2.80	14.90	0.03%
事例组装器	0.33	0.29	0.00%
事例取样器	0.64	2.30	0.01%
其它	9.51	/	0.10%
总和	9704.71	14937.79	100%

- 数字化+重建耗时
- 物理过程: e+e- --> j/psi μ⁺μ⁻ --> π⁺π⁻ μ⁺μ⁻