

基于开关电容阵列的TPC通用读出 ASIC进展

刘丰 赵馨远 邓智 刘以农 清华大学工程物理系 2019.10.18

邓智: <u>dengz@mail.tsinghua.edu.cn</u>; 刘丰: <u>feng-liu14@mails.tsinghua.edu.cn</u>

- 研究背景
- 开关电容单元抗辐射加固设计
- 大存储深度SCA芯片设计与性能测试
- 总结与计划

开关电容阵列的优势:

- 低功耗:自身功耗低,易于多通道集成
- 采样率:以较高的采样率循环采样(ring buffer),有效trig触发时,才将采样值读出,并降低了后端ADC的读出要求
- 串行化输出: 可减小输出电缆, 进一步降低系统功耗

Zhang H Y, Deng Z, He L, et al. CASCA: a Readout ASIC for a TPC Based X-Ray Polarimeter[C]// 2015 NSS/MIC, 2015: 1-4.

参数	指标
通道数	32
动态范围	40 fC (1V)
采样频率	40 MS/s
有效精度	8.8 bits
核心功耗	2.8 mW/ch
采样深度	64
采样时间	1.2 µs @50 MS/s

无法满足大型探测器的需求 4

ASIC简介

开关电容单元抗辐射加固设计

- 测试芯片TCAP:
 - 工艺: 0.18 µm CMOS
 - 结构: 32-cell × 6 通道
 - 电容: MOS, GR+MOS, MIM
 - 开关:环形栅开关、直栅开关(非加固)
 - 差分电流输出

通道	开关	电容
1	非加固开关	MOS电容
2	非加固开关	GR + MOS电容
3	ELT加固开关	MOS电容
4	ELT加固开关	GR + MOS电容
5	非加固开关	MIM电容
6	ELT加固开关	MIM电容

GR:保护环(Guard Ring) ELT:环形栅(Enclosed Layout Transistor) • 测试平台:

开关电容单元抗辐射加固设计

• TCAP总剂量效应测试结果:

增益保持不变; INL略有增加, 辐照后INL<0.3%

通道	开关电容单元结构	静态噪声增量	漏电流(辐照前)	漏电流(辐照后)
1	MOS	0.3 mV	8 fA	309 fA
2	GR+MOS	0.2 mV	7 fA	228 fA
3	ELT+MOS	0.3 mV	8 fA	278 fA
4	ELT+GR+MOS	0.1 mV	6 fA	127 fA
5	MIM	0.1 mV	9 fA	51 fA
6	ELT+MIM	<0.1 mV	2 fA	11 fA

- 总剂量1 Mrad (Si) 辐射后开关电容单元中MOS电容的漏电流影响更为严重。
- MIM电容+直栅开关组成的开关电容单元进行抗辐射电路设计。

GR:保护环(Guard Ring) ELT:环形栅(Enclosed Layout Transistor)

大存储深度开关电容阵列芯片简介

• 结构框图:

• 性能指标:

参数	指标
工艺	0.18 µm CMOS エ艺
工作电压	1.8 V, 2.5 V
输入动态范围	0.3V - 1.3 V
采样频率	100 MS/s
采样深度	32 - 256
采样精度	10 bits
ADC时钟频率	100 MHz
ADC动态范围	12 bits
ADC转换时间	42 µs
最大死时间	336 µs
核心功耗	3.2 mW/ch

- 采样、存储的二级结构实现大存储深度
- 根据需求实现可编程存储深度

• 信号流向:

8

• 芯片版图:

• 测试系统:

10

全芯片噪声分布较均匀

12

Vrms = 2.1 mV @ 40MS/s

有效精度 = 8.9 bits

平均漏电流 = 18.2 fA

为达到10 bits精度要求,需在2 ms内读出所有数据。

总结与计划

- 1. 开关电容阵列芯片更高采样率的分析与测试
- 2. 校准方法的进一步优化研究
- 3. 结合CASAGEM与SCA芯片,实现模拟前端+波形采样+数字化的高密度、低功耗前端板

性能指标		CASAGEM+SCA	AGET
	工艺	0.35, 0.18 μm	0.35 µm
全芯片	通道数	16	64
	单通道功耗	10+3.3 mW	9.1-10.3 mW
模拟前端	动态范围	0-1000 fC	120 fC-10 pC
	达峰时间	100-400 ns	50 ns-1µs
开关电容阵列	采样率	1-100 MS/s	1-100 MS/s
	采样深度	32-256	512
ADC	动态范围	12 bits	无
	ADC时钟	100 MHz	无

THANK YOU!