

基于65纳米工艺的TPC探测器数字化前端芯片研制进展

刘伟,刘灿文,邓智,李福乐,李玉兰,祁汇荣

2021/10/23

目录

一. 背景介绍

- 二. 数字化前端芯片研制进展
- 三. 总结与下一步

目录

一. 背景介绍

- 二. 数字化前端芯片研制进展
- 三. 总结与下一步

CEPC TPC

Momentum resolution (B=3.5T)	$\delta(^{1}/p_{t} \approx 10^{-4}/GeV/c)$
δ_{point} in $r\Phi$	<100 µm
δ_{point} in rz	0.4-1.4 mm
Inner radius	329 mm
Outer radius	1800 mm
Drift length	2350 mm
Pad pitch/no. padrows	$\approx 1 \text{ mm} \times (4 \sim 10 \text{mm}) / \approx 200$
2-hit resolution	$\approx 2 \text{ mm}$
Efficiency	>97% for TPC only ($p_t > 1 GeV$) >99% all tracking ($p_t > 1 GeV$)

- 高动量分辨率→高空间分辨率→小读出pads(~1 mm x 6mm)→两百万路电子学读出通道
- ILC工作在bunch train模式, bunch间隔200 ms, 但是CEPC对撞频率高(~100 kHz), TPC需要连续工作(电子漂移时间~30 us)→连续读出低功耗电子学
- 高亮度(~2 x 10³⁴ cm⁻²s⁻¹)→高事例率(1 kHz → 10 kHz)→高计数率→波形采样
 ADC

 ^{背景介绍}
 4

国内外高能物理实验TPC读出芯片发展现状

AGET (T2K)

Super_ALTRO (ILC)

PASA+ALTRO (ALICE)

SAMPA (ALICE Upgrade)

背景介绍

国内外高能物理实验TPC读出芯片性能总结

	AGET	PASA+ALTRO	Super-ALTRO	SAMPA
TPC	T2K	ALICE	ILC	ALICE upgrade
Pad尺寸	$6.9 \text{x} 9.7 \text{ mm}^2$	$4x7.5 \text{ mm}^2$	1x6 mm ²	$4x7.5 \text{ mm}^2$
通道数	1.25 x 10 ⁵	5.7x 10 ⁵	1-2 x 10 ⁶	5.7 x 10 ⁵
读出结构	MicroMegas	MWPC	GEM/MicroMegas	GEM
增益	0.2-17 mV/fC	12 mV/fC	12-27 mV/fC	20/30 mV/fC
成型方式	$CR-(RC)^2$	$CR-(RC)^4$	$CR-(RC)^4$	$CR-(RC)^4$
达峰时间	50 ns-1us	200 ns	30-120 ns	80/160 ns
ENC	850 e @ 200ns	385 e	520 e	482 e @ 180ns
波形采样方式	SCA	ADC	ADC	ADC
采样率	1-100 MSPS	10 MSPS	40 MSPS	10 MSPS
精度	12 bit(external)	10 bit	10 bit	10 bit
功耗	<10 mW/ch	32 mW/ch	47.3 mW/ch	17 mW/ch
CMOS工艺	350 nm	250 nm	130 nm	130 nm

- 当前没有一款TPC读出芯片可以同时满足CEPCTPC读出需求
 - 高计数率
 - 低功耗

	PASA+ALTRO	Super-ALTRO	SAMPA
成型方式	$CR-(RC)^4$	$CR-(RC)^4$	$CR-(RC)^4$
达峰时间	200 ns	30-120 ns	80/160 ns
波形采样方式	Pipeline ADC	Pipeline ADC	SAR ADC
采样率	10 MSPS	40 MSPS	10 MSPS
精度	10 bit	10 bit	10 bit
模拟前端功耗	11.67 mW/ch	16.25 mW/ch	9 mW/ch
ADC功耗	12.5 mW/ch	30.0 mW/ch	1.5 mW/ch
数字部分功耗	7.5 mW/ch	3.6 mW/ch	6.5mW/ch
CMOS工艺	350 nm	130 nm	130 nm

- 当前的高计数率波形采样读出芯片功耗主要来源
 - Pipeline ADC
 - 高阶模拟成型电路
- 低功耗设计策略:
 - 使用更先进的 65 nm CMOS工艺
 - CR-(RC)ⁿ→CR-RC, 数字域实现高阶成型
 - ADC 结构: Pipeline (流水线) → SAR (逐次逼近)

目录

一. 背景介绍

二. 数字化前端芯片研制进展

三. 总结与下一步

- 1. WASA_V0测试进展
- 2. WASA_V1设计进展

TPC数字化前端芯片WASA开发历程

• 原型验证芯片

• WASA_V0

• WASA_V1

WASA_VO芯片设计

- 基于65纳米的波形采样低功耗读出芯片WASA_V0:
 - 功耗与噪声的优化
 - 集成度提高

版图设计

12

• 测试环境

• 芯片测试板

功耗

- 模拟前端功耗测试值: 1.43 mW/ch (1.40 mW/ch sim.)
- ADC功耗随采样率增加而增加, 1.06 mW/ch @40 MS/s

瞬态输出

- 瞬态输出
 - 模拟前端差分输出共模电压可以片外调节

ADC 瞬态输出 @ 30MSPS

WASA_V0测试进展

线性@10 mV/fC

• 瞬态输出

• 线性@ 增益 = 10 mV/fC

增益 = 4.4 LSB/fC = 4.4 x 2.34 mV/fC = 10.3 mV/fC

噪声性能

- 统计基线的标准差@ 增益 = 10 mV/fC
 - ADC量化噪声贡献很大,可以通过数字滤波降低噪声

ENC = 19.8 e/pF+941 e @30 MS/s, 增益 = 4.4 LSB/fC

数字梯形滤波

- 梯形滤波后波形更加对称,可以达到更高的SNR(信噪比)
- 避免弹道亏损
- 硬件开销小,容易在芯片上实现
 - 2次乘法,6次加减法以及一些移位操作

数字梯形滤波@MATLAB

t_flat = 200 ns

- 波形更加对称
- ENC
 - CR-RC波形经ADC采样后 ENC = 852 e
 - 梯形滤波后最小 ENC =589 e@平顶时间: 200 ns, 上升时间: 600 ns

- 1. WASA_V0测试进展
- 2. WASA_V1设计进展

WASA_V1芯片设计

数字部分

- 基线恢复模块: 第一级基线恢复去除低频的干扰(~kHz), 第二级去除高频的干扰
- 梯形滤波器:梯形成型,提高信噪比
- 触发控制: 多种触发模式可选
- Ring Buffer: 深度1k, 最大latency:10.24us@100MS/s
- Event buffer: 深度为4

WASA_V1芯片设计

• 单通道仿真功耗: 1.4+1.0+4.1=6.5mW@开关活动率: 10%

版图设计

芯片版图:

- 版图面积: 3783 µm x 2243 µm
- 模拟前端, SAR ADC, 数字模块, LVDS模块独立供电
- 模拟前端部分, SAR ADC, 数字模块, LVDS模块隔离

总结与下一步

□总结

- 基于65纳米工艺设计了一款低功耗TPC读出芯片WASA_V0,包括模拟前端和SAR ADC,初步进行了电子学测试
 - 功耗: 2.49 (1.43+1.06) mW/ch@40 MS/s
 - ENC: 852 e \rightarrow 589 e@10 mV/fC, C_{in}=3.6pF
- 基于WASA_V0芯片,设计了一款集成数字滤波功能的读出芯片
 WASA_V1,包括了模拟前端+ADC+数字模块(数字滤波,打包, 触发判选等)

□下一步:

• 基于WASA_VO芯片进行连接TPC测试

欢迎各位老师同学批评指正!

THANK YOU!

5通道模拟前端关键指标测试结果:

- 单通道功耗: 2.02mW
- 增益: 10.06mV/fC
- ENC: 589e @10pF

已有基础:低功耗SAR ADC

90µm

- SAR ADC IP核尺寸小,~90 um x 97 um
- 采样率: 100 MS/s
- 精度: 10 bit
- 最大 INL/DNL=0.6 LSB
- ENOB=9.15 bit @ 50 MS/s, 2.4 MHz 正弦波输入
- 功耗低: 1 mW/ch

