CEPC漂移室粒子鉴别的模 拟研究

赵光1, 辛水艇1, 董明义1, 伍灵慧1, 孙胜森1

zhaog@ihep.ac.cn

1 中国科学院高能物理研究所

第十届全国先进气体探测器研讨会 2021年10月23日

Outline

Introduction

- Drift chamber in CEPC
- Principles: dE/dx vs. dN/dx

Simulation

- Full simulation: waveform + electronics + cluster counting
- Preliminary PID performance

Prototype experiment

Summary

Introduction: Physics Programs of CEPC

- □ The CEPC aims to start operation in 2030's, as a Higgs (Z) factory in China. The plan is to operate
 - Above **ZH** threshold ($\sqrt{s} \sim 240$ GeV) for 7 years.
 - Around and at the Z pole for 2 years.
 - Around and above W⁺W⁻ threshold for 1 year.
 - It is upgradeable to run at the tt threshold.
- □ Possible *pp* collider (SppC) of $\sqrt{s} \sim 50-100$ TeV in the future.

Operation mode		ZH	Z	W^+W^-
\sqrt{s} [GeV]		~240	~91.2	158-172
Run time [years]		7	2	1
CDR	$L / \text{IP} [10^{34} \text{ cm}^{-2} \text{s}^{-1}]$	3	32	10
	$\int L dt$ [ab ⁻¹ , 2 IPs]	5.6	16	2.6
	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×107
Latest	L / IP [10 ³⁴ cm ⁻² s ⁻¹]	5	105.5	18.7

- The large samples from 2 IPs: 10⁶ Higgs, 10¹² Z, 10⁸ W bosons, provide a unique opportunity for
 - High precision Higgs, EW measurements,
 - Study of flavor physics (b, c, tau) and QCD,
 - Probe physics beyond the standard model.

•

Introduction: The 4th Conceptual Detector Design

Introduction: PID in Drift Chamber

Particle identification (PID) is essential for flavor physics

- Kaon/pion separation up to 20 GeV/c is necessary →
- Ionization measurement with a gaseous detector can provide powerful K/π separation up to dozens of GeV/c within an acceptable detector size

→ Drift chamber (DC) for PID is proposed

- Comparing to the energy loss measurement, the cluster counting technique is expected to improve the ionization measurement with small fluctuations
- To study the PID capability of DC with cluster counting, a full simulation is performed

CEPC 4th Conceptual Detector

Principle of Ionization (I)

- A charged particle losses energy when traversing a medium
- A sequence of primary interactions (clusters) along the track
 - The # of clusters can be described by the Poisson distribution

$$P(\overline{N}_p,k) = \frac{\overline{N}_p^k}{k!} e^{-\overline{N}_p}$$

- For each cluster, one or more electrons are released
 - Secondaries usually localized to the primaries
 - **Cluster size**: # of electrons for each cluster

Principle of Ionization (II)

- Electrons/ions drift in the fields
- Avalanche happens near the wire and signal is induced
 - Each electron/ion pair produces a current pulse
 - The **amplitude** is proportional to the *#* of avalanche electrons
 - The starting time is almost determined by the drifting time
 - Induced current is further fed to the electronics system

Full waveform of a cell

Ionization Measurement: dE/dx

dE/dx measurement: integration of the waveform

- Large fluctuation from
 - Energy loss from all the processes (primary, secondary)
 - Amplification (avalanche)
- Long tail due to secondary electrons, usually use truncated mean for a better resolution
- A reference resolution (truth)*: ~3% (20 GeV/c, pions, det. size=120 cm)

Ionization Measurement: dN/dx

- Cluster dN/dx counting for the state of primaries
- Small fluctuation (only from the Poisson behavior of the primary ionizations)
- Easy to reach the Gaussian limit
- A reference resolution (truth)*: <2% (20 GeV/c, pions, det. size=120 cm)

dE/dx vs. dN/dx (MC truth)

dN/dx measurement:

- More powerful for K/pi separation
- Technically challenging

Simulation

Simulation

- Garfield++
 - Heed: ionization process
 - Magboltz: gas properties (drift/diffusion)
 - Signal generation

- · Preamplifier
 - Impulse response
- Noises
 - Amplitude
- ADC
 - · Sampling rate

Essential to simulate the distortion and interference of the signals

Induced Current Waveform

Electronics (I): Preamplifier

Electronics (II): Noises

- Add white noises to the raw current signal
- Relative noise ratio (NR): $\frac{\sigma_n}{s}$
 - σ_n : Standard deviation of noises
 - S: Average single pulse amplitude

Cluster Counting Algorithm: MA + D1

- Moving average (MA) filter: MA[i] = $\frac{1}{M} \times \sum_{k=0}^{K < M} S[i k]$ (smoothing)
- First difference (D1) filter: D1[i] = MA[i] MA[i 1]

K/pi Separation Power (det. size = 150 cm)

Can achieve $\sim 3.5(2.5)\sigma$ K/pi separation power for p < 15(20) GeV/c

Prototype Experiment

Prototype Experiment Setup

Waveform Examples (Sr Source)

- Can observe peaks with fast rising edges in the waveforms
- Small-gain signal and low noise
 - Signal amplitude: ~10¹ mV (max. peak)
 - Noise amplitude: ~10⁻¹ mV (sigma)

Noise generation

(Bin size is limited by the measurement precision)

Response function extraction (preliminary)

Signal1 \otimes Response = Signal2

- Time constant ~0.6 ns (assume an exponential form)
- Risetime ~ 1ns: comparable with our previous simulation

Checks:

- Check the response function by convoluting to the signal w/o pre-amp.
- Show good consistency for different signal types

Summary

A simulation framework for cluster counting is ready

Preliminary PID performance with baseline configuration is obtained

• det. size = 150 cm: \sim 3.5(2.5) σ K/pi separation is achievable for p < 15 (20) GeV/c

Initial prototype experiments are setup. The following information is extracted:

- Electronics noises
- Response of the preamplifier (preliminary)

Next to do

- Optimizations
 - Detector design: layout, cell, gas, …
 - Electronics: tuning parameters based on experiments
 - Reconstruction: counting algorithm, corrections/calibrations
- Experiment with trigger

Plan: Prototype experiment with collimation

- Constrain the entrance angle and track length of the emitted electrons from the Sr source
 - Two scintillator counters with small active area will be used to provide trigger signals
- Tune the gain of the preamplifier