# Screener3D: 用于极低放射性

# 材料筛选的带电粒子探测器

韩柯 上海交通大学 2021/10/22

上海交通大学:杜海燕,张文铭,Karl Giboni,韩柯,孟月,王少博,张涛,赵力 雅砻江流域水电开发有限公司:何胜明、周济芳、杜成波、刘立强

## 稀有事件实验中的材料表面放射性问题

- 稀有事件实验:探测器本底水平直接决定物理灵敏度
- 放射性洁净度要求=块材洁净+表面洁净
  - 零件机械加工、组装调试、氡气及其子核 > 表面二次污染
- 表面污染直接、间接引入本底
  - 表面污染释放的α、β粒子→本底事件(CUORE、CDMS等)
  - 表面污染源→转移到灵敏体积→本底事件(PandaX、KamLAND-Zen等)

| Summary of ER and NR backgrounds |                       |                             |  |  |  |
|----------------------------------|-----------------------|-----------------------------|--|--|--|
| Source                           | ER in mDRU            | NR in mDRU                  |  |  |  |
| Materials                        | $0.0210 \pm 0.0042$   | $2.0 \pm 0.3 \cdot 10^{-4}$ |  |  |  |
| $^{222}$ Rn                      | $0.0114 {\pm} 0.0012$ | -                           |  |  |  |
| <sup>85</sup> Kr                 | $0.0053 {\pm} 0.0011$ | -                           |  |  |  |
| $^{136}$ Xe                      | $0.0023 {\pm} 0.0003$ | -                           |  |  |  |
| Neutrino                         | $0.0090 \pm 0.0002$   | $0.8 \pm 0.4 \cdot 10^{-4}$ |  |  |  |
| Sum                              | $0.049 \pm 0.005$     | $2.8 \pm 0.5 \cdot 10^{-4}$ |  |  |  |
| 2-year yield (evts)              | $1001.6 \pm 102.2$    | $5.7 \pm 1.0$               |  |  |  |
| after selection (evts)           | $2.5 \pm 0.3$         | $2.3 \pm 0.4$               |  |  |  |

PandaX-4T实验氡气贡献电 子反冲(ER)本底,氡气 主要来源于探测器和相关 管路材料表面的氡释气。



第2页

| 仪器与方法                       | 典型对象                                            | 典型精度                                                   | 设备举例                            | <b>备注</b> <sup>韩柯,上海交通大学</sup> 第3页 |
|-----------------------------|-------------------------------------------------|--------------------------------------------------------|---------------------------------|------------------------------------|
| 高纯锗(HPGe)γ<br>谱线分析          | 高纯无氧铜内<br>的 <sup>238</sup> U和 <sup>232</sup> Th | 1-10µBq/kg<br>(10 <sup>-8</sup> -10 <sup>-9</sup> g/g) | 清华GeTHU;意大<br>利GeMPI            | 无损检测,对样<br>品没有任何影响                 |
| 中 子 活 化 分 析<br>(NAA)        | 特氟龙内的 <sup>238</sup> U<br>和 <sup>232</sup> Th   | 10 <sup>-10</sup> -10 <sup>-11</sup> g/g               | 美国MIT, UC Davis<br>中子活化设施       | 需要利用中子辐<br>照 ; 测量窗口短               |
| 电感耦合等离子<br>体质谱仪(ICP-<br>MS) | 高纯无氧铜内<br>的重元素                                  | 10 <sup>-12</sup> g/g                                  | 美国PNNL实验室;<br>国内多家单位            | 克量级取样;复<br>杂化学预处理                  |
| 带电粒子谱仪<br>(CPS)             | 大面积材料表<br>面放射性                                  | 10 <sup>-4</sup> -10 <sup>-2</sup> Bq/m <sup>2</sup>   | 法国BiPo-3; XIA公<br>司Ultralo 1800 | 对材料表面的α<br>粒子,电子放射<br>性灵敏          |







BetaCage:CDMS实验组提出的 低本底MWPC设计,未能实现

BiPo-3:SuperNEMO实验组设计建造PMT 阵列,测量Bi-Po偶合

第5页





XIA Ultra-lo 1800:主要针对半导体硅片测量; 9%FWHM@4.6MeV;10<sup>-4</sup> c/cm<sup>2</sup>/hr,满足硅片 5α每天的要求 Canberra LB4200:最大5 寸硅片;约10<sup>-2</sup>c/cm<sup>2</sup>/hr

# 利用其放出的α/β粒子,测量材料表面放射性

- 高能α粒子的特征谱线可用于分辨不同表面污染
- β测量针对无γ释放(如<sup>209</sup>Pb)或者γ强度很小 (如<sup>210</sup>Pb)的同位素
- 同时测量α, β的Bi-Po偶合技术





韩柯,上海交通大学

第6页

第7页

## 探测器概念设计

中

- 常压氩气、氙气(0.5-1.5 bar) 时间投影室探测器(TPC)
- 40×60cm<sup>2</sup>电荷读出平面;10cm 漂移距离
- 基于Micromegas + AGET的多通 道读出
- 平板型样品直接放置于阴极板上
  方,保证α能量完全沉积到TPC



#### 韩柯,上海交诵大学 用于极低放射性材料筛选的时间投影室技术:能量+径迹



- 粒子鉴别
- 高位置分辨率

- •本底去除
- •高效率(>90%)

•大幅面(~2000cm<sup>2</sup>)

第8页

• 可调工作气体、气压

## 气体TPC核心优势:径迹+能量测量 → 鉴别与定位



 粒子鉴别:利用径迹 的弯曲程度和dE/dx可 以明确区分α/β

上海交诵大学

第9页

- 利用dE/dx与布拉格峰
  确定α/β径迹起点,明
  确放射性来源
  - 去除探测器材料对于α
    测量的影响
  - 大大抑制β测量中环境
    和探测器本底的影响

# 蒙特卡洛模拟与灵敏度研究(arXiv:2107.05897)

第10页

- •利用GEANT4 + REST 模拟分析框架重建了 探测器几何。
- · 对于alpha 区间,开展探测灵敏度研究,预 期灵敏度可达 100 μBq/m<sup>2</sup>以下

#### Sensitive Gaseous Volume: 60x40x10 cm, 1 bar Ar



#### GEANT4 spectrum



#### + Energy smearing



#### + Topological cuts



# 径迹相关cuts (Topological cuts)

- 利用径迹起始位置,方向,长度逐步对 事件进行筛选,压低本底的情况下尽可 能的保留信号
- •最终在1-10MeV的区间,本底事件率小于1个每天









# 多轮原型探测器迭代(单块 Micromegas)

@圆桶腔体



场笼+适配铝合金腔体

柔性PCB场笼+适配亚 克力腔体

韩柯,上海交诵大学

第12页

# 多轮原型探测器迭代(单块 Micromegas)



韩柯,上海交通大学

第13页



- 利用气体探测器的能量+径迹特性测量样品表面
  污染
  - 粒子鉴别去除本底
  - 大幅面、高灵敏度、高效率
  - 长期目标为α测量灵敏度为10<sup>-8</sup>Bq/cm<sup>2</sup>

### • 近期进展

- 完成400cm<sup>2</sup>原型探测器搭建与运行,优化中
- 精细本底模拟与 α 测量灵敏度分析
- 下一步计划
  - 设计建设全体积探测器
  - 开展低本底探测器材料筛选





第14页

# 谢谢各位关注