

eXTP卫星偏振测量X射线聚焦望远镜 阵列研制进展

姜维春(IHEP) on behalf of the eXTP_PFA Consortium

China, October 22, 2021

eXTP科学主题:黑洞和中子星的核心问题

- 极端条件下的物理规律:处于黑洞极强
 引力场中的物质或者处于中子星表面磁
 场和核心区的物质;
- "一奇二星三极端":通过观测一奇二 星(黑洞、中子星和夸克星)理解三极 端(引力、密度和磁场)物理规律。 GM/c²r~1,10¹⁵g/cm³,10¹⁴Gs

真空涨落、中子还是夸克?

eXTP卫星上的偏振测量聚焦望远镜阵列(PFA)

Polarimetry Focusing Array(PFA) onboard eXTP

- PFA的科学能力:
- 。 成像 (Imaging)
- 。 偏振测量 (Polarimetry)
- 时变测量 (Timing)
- 能谱测量 (Spectrometry)

Simulating results of the imaging polarization for the SN1006

Simulating results of the imaging polarization for crab

二 W.	PFA		
参致	指标要求	目标	
有效面积(给定的能量为E±0.5keV,下同)	380cm ² @3keV	420cm ² @3keV	
有效面积测量精度(knowledge)	≤ 10% (TBC)	≤ 5% (TBC)	
能量范围(keV)	2-8	2-10	
能量测量精度(knowledge)	≤ 1%	≤ 0.8%	
能量分辨(FWHM,寿命末期)	25%@5.9keV	20%@5.9keV	
视场(FWHM,@3 keV)	≥ 8x8 ′		
角分辨@2keV	30"(HPD)	15"(HPD)	
响应稳定性 (ΔP/P)	≤ 5%	≤ 2%	
源定位精度(天球坐标系)	5″ (1σ)		
时间分辨(µs)	≤10	≤8	
绝对时间精度(µs)	≤4		
死时间	≤10% @ 1 Crab (TBC)	≤3% @ 1 Crab	
死时间测量精度(knowledge)	≤ 10%		
本底	bkg(2-8 keV) ≤ 0.1 cts/s/cm²/det⁻¹	bkg(2-8 keV) ≤ 0.05 cts/s/cm²/det ⁻¹	
本底测量精度(knowledge)	≤0.5% @ 2-8 keV	≤0.25% at 2-8 keV	
可持续观测的源强度	≥ 1 Crab	≥ 2 Crab	
偏振灵敏度(MDP@2-8keV)	3% (10 ⁶ s, 1mCrab)	2% (10 ⁶ s, 1mCrab)	
残余调制	≤1%		
偏振角测量精度(天球坐标系)	≤1° (@ 95% 置信度)		
相机安装方位角间隔	90°		
模块化特性(由于单元失效造成的面积损失)	1⁄4		

Effective Area of PFA

Effective Area (on-axis) /module

50µm铍窗GPD的探测效率

PFA聚焦光学设计方案

PFA聚焦光学设计方案

X射线偏振测量原理

Designed by the INFN-Pisa group (Bellazzini et al.)

Detecting Area:12mm×12mm Pixel distance: 50µm,352×300 pixels Noise level: 50e-

PFA焦平面相机设计

PFA总体方案设计

• 防标定源杂散X射线与降本底设计

PFA载荷相关研制进展

- 光学部分完成首个纯镍镜筒的试制
- PFA焦平面工程样机研制
 - 电子学完成第一版(原理样机)功能调试,后续将进行匹配有性能GPD的测试;
 - 电子学第二版(工程样机)正在设计、加工
 - 完成机构设计和初步力学分析
 - 确定热控方案并完成初步热分析
 - PFA高压电源和在轨偏振源关键技术攻关
 - GPD中ASIC粘片工艺
- 利用机器学习进行了电子径迹重建算法的初步探索
- 进行了数据压缩算法的研究,并应用到立方星载荷的MCU中

PFA载荷相关研制进展

- 100µm铍窗GPD搭载"铜川一号"立方星 飞行验证(2018年10月29日发射,至今工 作正常)
- 50µm铍窗GPD(第二颗)在轨飞行验证(2022年择机发射)
 - 更新设计,提高了电源的适应性,
 - 增加了数据压缩功能,减小了数据传输带宽
 和采集事例的死时间,
 - 增加了死时间记录功能,可以更直接的获取
 死时间,进行死时间修正。

Energy resolution of GPD

Crystal	Order	E (keV)	FWHM/E	μ
PET	I	2.01	0.230 ± 0.008	0.136 ± 0.047
MgF ₂	1	2.67	0.230 ± 0.002	0.211 ± 0.015
Al	l I	3.74	0.201 ± 0.001	0.420 ± 0.009
MgF ₂	11	5.33	0.175 ± 0.002	0.513 ± 0.012
LiF	II	6.14	0.164 ± 0.001	0.568 ± 0.010
Al	II	7.49	0.165 ± 0.006	0.665 ± 0.022

H. Feng et al. 2019

Modulation factor of GPD

Crystal	Order	E (keV)	FWHM/E	μ
PET	I	2.01	0.230 ± 0.008	0.136 ± 0.047
MgF ₂	l I	2.67	0.230 ± 0.002	0.211 ± 0.015
Al	I	3.74	0.201 ± 0.001	0.420 ± 0.009
MgF ₂	11	5.33	0.175 ± 0.002	0.513 ± 0.012
LiF		6.14	0.164 ± 0.001	0.568 ± 0.010
Al	II	7.49	0.165 ± 0.006	0.665 ± 0.022

Quality factor of GPD

Volume 4 Issue 5, May 2020

A glitch in time

A CubeSat hosting the PolarLight payload has made it possible to conduct polarimetry in the soft X-ray band from space, more than 40 years after this opportunity was last available to astronomers. Hua Feng and colleagues observed the Crab, fortunately catching the pulsar during a glitch.

See Feng et al.

Thanks !