

第十届全国先进气体探测器研讨会 RHIC-STAR实验近期探测器升级

杨驰

山东大学

相对论重离子对撞机RHIC上的STAR实验

位于美国布鲁克海文国家实验室(BNL)的相对论重离子对撞机(RHIC)上的STAR探测器

STAR近期探测器升级

• QCD物质特性、核子内部结构

冷核QCD、热核QCD物理:

• RHIC run 2022+

束流能量扫描二期计划:

- RHIC run 2019-2021
- QCD 相图、临界点、手征相变等

已完成:

- ✓ 时间投影室内扇区(iTPC)
- ✓ 端盖飞行时间探测器(eTOF)
- ✓ 事例平面探测器(EPD)

On both east and west of STAR

已经完成的探测器升级

iTPC upgrade	EPD upgrade	eTOF upgrade
η <1.5	2.1< η <5.1	-1.6<η<-1.1
p _⊤ >60 MeV/c	Better trigger & b/g reduction	Extend forward PID capability
Better dE/dx resolution Better momentum resolution	Greatly improved Event Plane info (esp. 1 st - order EP)	Allows higher energy range of Fixed Target program
Fully operational in 2019	Fully operational in 2018	Fully operational in 2019

前向快度区物理测量需求

Observables:

- ✓ Inclusive and di-jets
- ✓ Hadrons in jets
- Lambda's
- Correlations mid-forward & forward-forward rapidity

Requirements from Physics:

- ✓ Good e/h separation
- ✓ Hadrons, photon, π^0 identification

Detector	pp and pA	AA
ECal	~10%/√E	~20%/√E
HCal	~50%/√E+10%	
Tracking	charge separation photon suppression	0.2 <p<sub>T<2 GeV/c with 20-30% 1/p_T</p<sub>

Forward-rapidity 2.8< η <4.2

Beam:

A+A

Full Energy AuAu (2023/25) <u>Physics Topics:</u>

- Temperature dependence of viscosity through flow harmonics up to η ~4
- Longitudinal decorrelation up to η ~4
- Strong rapidity dependence in Global Lambda Polarization

p+A, p+p Beam:

500 GeV: p+p 200 GeV: p+p and p+A

Physics Topics:

- TMD measurements at high x

 o transversity → tensor charge
 o Sivers through DY, direct γ and tagged
 jets
- Gluon PDFs for nuclei
- R_{pA} for direct photons & DY, and hadrons
- Test of Saturation predictions through di-hadrons, γ -Jets, di-jets

FY2022: 500 GeV polarized pp run All other data taking in parallel to sPHENIX data taking campaign

前向快度区的新探测器

FST, 3 Silicon disks: at 146, 160, and 173 cm from IP

Built on successful experience with STAR IST

- Single-sided double-metal mini-strip sensors
 - $\checkmark~$ Granularity: fine in f and coarse in R
 - ✓ Si from Hamamatsu
- Frontend chips: APV25-S1 → IST all in hand
- Reuse IST DAQ system and cooling system

FCS: 7 m from the IP

ECal: reuse PHENIX SHASHLYK 1496 Ch.

• Lateral tower Size $5.5 \times 5.5 \times 33 \text{ cm}^3$ (18X₀)

HCal: Fe/Sc (20mm/3 mm) sandwich 520 Ch.

- Lateral tower size 10 x 10 cm², ~ 4.5λ
- ✓ in close collaboration with EIC R&D

Preshower:

• Existing EPD, with additional splitter

FTT, 4 sTGC disks:

at 307, 325, 343 and 361 cm from IP

- location inside Magnet pole tip opening
 - ✓ inhomogeneous magnetic field
- 4 quadrants double sided sTGC → 1 disk
 - ✓ sTGC technique developed by ATLAS
- Position resolution: ~200 um
- Readout: based on VMM-chips

https://drupal.star.bnl.gov/STAR/starnotes/public/sn0648

6

前向sTGC径迹探测器(Forward sTGC Tracker)升级

• Four layers, 16 (+4) modules (山大)

Module R&D Mass production Quality and performance tests

・ 96 (+12) FEB + 16 (+2) ROD (中科大)

Electronics R&D Mass production and test

• DAQ system (BNL)

Electronics Integration

• Integrations (BNL)

Support structure Gas system Installation, interlocks

・ Software (BNL+山大)

Simulator

Cluster finder

Small-strip Thin Gap Chamber (sTGC): Originally designed by ATLAS and used in ATLAS NSW upgrade

电子学部分详见李颖杰报告, 15:36-15:54, Oct. 22nd

前向sTGC径迹探测器(Forward sTGC Tracker)升级

Anode:

1.4mm

1.4mm

50 um gold-plated tungsten wire

1.8 mm wire pitch

350g wire tension

Cathode: graphite (200kohm/2.5cm²)

首次探测器和电子学联调。 At SDU Lab in Sep.2020.

STAR FTT研制团队

Management:

Brookhaven National Laboratory 山东大学 中国科学技术大学

<u>Chi Yang (Project Manager)</u>, Prashanth Shanmuganathan (Deputy Project Manager)

Module:

Changyu Li, Yingying Shi, Qinghua Xu, <u>*Chi Yang*</u>, Qian Yang, + Local engineers

Electronics:

Ge Jin, *Feng Li*, Peng Miao, Lijuan Ruan, Zebo Tang, Shuang Zhou, Yingjie Li

DAQ:

Timothy Camarda, *Tonko Ljubicic*

Integration:

Felix Archampong, Michael Capotosto, Alexei Lebedev, <u>*Rahul Sharma*</u>, Prashanth Shanmuganathan, John Scheblein, David Tlusty, STSG + Students +

Software and simulation:

James Daniel Brandenburg, Zhenyu Chen, Zhen Wang

STAR FTT原型机研制

From 2018 till now:

- ✓ Three versions of module prototypes
- $\checkmark\,$ Three versions of electronics prototype

30 x 30 cm² prototype

60 x 60 cm² prototype

Module Production: **SDU**

Integrations & DAQ: BNL

Commissioning & software: BNL, SDU

Detector	Produced	Shipped	Installed
1 st prototype	Oct.2018	Jan.2019	Jun.2019
2 nd prototype	Jan.2019	Jul.2020	May 2021
3 rd prototype	Oct.2020	N/A	N/A
Final module	<u>Jun. 2021</u>	<u>Jun.2021</u>	<u>Oct.2021</u>

55 x 55 cm² pentagon

Electronics: **USTC**

Forward sTGC Tracker – 原型机性能

Production, Testing and Commissioning

sTGC module production at SDU

Mass production:

- March. 9th Jun. 8th, 2021
- 25 modules produced
- 23/25 passed QA

sTGC module test at SDU

2nd prototype installed at STAR in Run21

FTT安装在STAR

Critical Lift: successfully done on Oct. 14th 2021

Pushed into the pole tip: Oct. 19th 2021

非常靠近束流管,安装难度及风险大。

STAR前向快度区探测器升级参与单位

Efficient and professional collaborating within STAR collaboration!

从RHIC到EIC

RHIC-STAR近期探测器升级提供的机遇:

EIC装置探测技术的部分预研究

HCal+SiPM readout same as EIC-fHCal (joint STAR EIC R&D) Silicon technique for EIC tracker sTGC technique for EIC trigger/tracker

部分EIC物理的预研

Inform the physics program Quantify experimental requirements

人才培养

Several tens of the graduate/undergraduate students involved

Summary and Outlook

- STAR中国组在RHIC-STAR近期的前向快度区探测器升级中做出了突出贡献。
- 主导的前向sTGC探测器的模块研制及电子学研制均已圆满完成,探测器系统已经成功的整体安装到 STAR上。
- ・目前, STAR前向探测器升级已经完成全部安装任务,正在进行调试,准备11月开始进行取数。
- •STAR前向升级为RHIC和未来的EIC装置之间架设了"桥梁"。

Backup

N-Pentane+CO₂ Gas Mixing System -- Backup

Forward Silicon Tracker, fSTAR

- Three disks, 36(+12) modules (NCKU/UIC)
 - Mechanical structure (NCKU)
 - Flexible hybrid (SDU/IU)
 - Silicon strip sensors (UIC/BNL)
 - APV25 frontend chips* (UIC)
 * in-hand and probe-tested
- Integration (BNL)
 - Mechanical supporting structure
 - Installation tooling
- Cooling system (BNL/NCKU)
 - Cooling lines
 - Cooling manifold
 - Rack (cooler, pumps)
- DAQ system (BNL/IU/SDU)
 - Inner signal cables
 - Outer signal cables, patch panel boards, readout modules, readout controllers, crates

Blue: existing Red: new

Forward Silicon Tracker, Module Design

Each module splits into two regions

- ✓ Inner-radius region: 5<R<16.5 cm</p>
 - 1 Kapton flexible hybrid
 - 1 Si sensor: 128×4 ($\phi \times R$) strips
 - 4 APV chips
- ✓ Outer-radius region: 16.5<R<28 cm
 - 1 Kapton flexible hybrid
 - 2 Si sensors: 128×4 ($\phi \times R$) strips
 - 4 APV chips
- ✓ material budget: ~1.5% X_0 per disk

Mechanical structure is made of

- ✓ PEEK (main structure, tube holder)
- ✓ Stainless steel (cooling tube)
- ✓ Aluminum (heat sinks)

Module assembly is done at two sites

- ✓ TiDC (NCKU): gluing inner/outer hybrids and mechanical structures together
- ✓ FNAL (UIC): mount/wire-bond AVPs and Silicon sensors on hybrids

Forward Silicon Tracker – Prototype Module Performance

T-Board production at SDU

Performance of two fully assembled prototype modules evaluated with cosmic ray:

✓ All channels can be read out (KPP: > 85%)

✓ Efficiency higher than 90% (KPP: > 90%)

Key Performance Parameter

Installed on STAR in Sep. 2021. In commissioning.

Pre-Installation at BNL

21

Forward Calorimeter System, fSTAR

FCS Requirements

Detector	pp and pA	AA
ECal	~10%/VE	~20%/√E
HCal	~50%/√E+10%	

Module Installation

DEP installation

Forward Calorimeter System (FCS)

- ✓ ECal 1496 channels ~ 8 tons
- ✓ HCal 520 channels ~ 30 tons
- ✓ SiPM Readout Bias ~ 67V
- New digitizers + Trigger FPGA = DEP boards
- \checkmark Total of 48+18+12 = 78 DEP boards
- ✓ 3 DEP-IO boards for triggering

https://www.bnl.gov/newsroom/news.php?a=217681

FCS fully operational in Run21. Works great out of box!