
Simulation of multi-layer GEM detectors

Aera JUNG, Yong BAN, Dayong WANG, Yue WANG, Licheng ZHANG 

- school of physics, Peking University (PKU), China

1
第十届全国先进气体探测器研讨会 (http://cicpi.ustc.edu.cn/indico/conferenceDisplay.py?confId=3793) online



01 Contents

2

• Motivation and Method

• Simulation results of single, double and triple GEMs

• Simulation results of quadruple GEMs

• Summary



01 Contents

3

• Motivation and Method

• Simulation results of single, double and triple GEMs

• Simulation results of quadruple GEMs

• Summary



01 Introduction

4

• Major advantage: With a multi-GEM layer structure, a very high
effective gain (up to 106 with some gases) can be attained with each
GEM layer working at an individually much lower gain thus avoiding
discharge problems.

• Our group’s simulation motivation:
• Single, double and triple GEMs:

• Quadruple GEM:

- There is not enough information to compare and understand the 
differences between single, double and triple GEMs seen in 
experiments and simulations.
- There are consistently seen difference in gain between     
simulation and experiment results.

- Lower operating voltage, low discharge probability and low
IBF make it more attractive for high radiation environments
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• Commercial software ANSYS + free software GARFIELD++

ANSYS : https://www.ansys.com/ 

Garfield++: https://garfieldpp.web.cern.ch/garfieldpp/

design the detector geometry, set boundary conditions and optimize the 
mesh of the structure for the electric potential calculation of each finite 
element

simulation of the electron motions
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Fabio Sauli, The gas electron multiplier (GEM): Operating principlesand applications, 
Nuclear Instruments and Methods in Physics Research A 805 (2016) 2-24 

• Schematics of single GEM 
detector

• Microscope view of GEM 
foil

• Standard hexagonal 
GEM foil

• The foil (e.g. 50 um thick kapton) is metalized on both sides (e.g. 5 um copper) and has 
a pattern of holes (e.g. 70 um with a 140 um pitch). 

• Gas: Single, double and triple GEMs - 70% Ar + 30% CO2 
triple and quadruple GEMs - 70% Ar + 30% CO2  and 90% Ar + 10% CO2

140 um

70 um

https://garfieldpp.web.cern.ch/garfield
pp/examples/triplegem/



01 Simulation model – detector configuration in the simulation

7

drift 
distance 

[mm]

transfer
distance

[mm]

induction
distance

[mm]

HV divider readout 
shape

drift 
field 

[kV/cm]

transfer 
field 

[kV/cm]

induction 
field 

[kV/cm]
single 3 1 / 2 1 / 2 2 3.5 3.5 plate

double 3 1 / 2 1 / 2 2 3.5 3.5 plate

triple 3 1 / 2 1 / 2 2 3.5 3.5 plate

quadruple 4.8 2 2 strip[Rajendra Nath Patra, et al., Nucl. 
Instrum. Meth. A 906, 37-42 (2018)]

strip
150 um

space
60 um

pitch
210 um
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• Gain: given by the number of electrons created by each primary
electron that reaches the anode

The experimental 
data (green)
originally from 
Bachmann’s paper 
[S. Bachmann, et al., 
Nucl. Instrum. Meth. 
A 479, 294-308 
(2002)]
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• Spatial resolution: key parameters for tracking systems and
extracted from the width of the residual distribution reached on
the anode/readout plate

• distance from the 
first GEM to the 
readout plate 
increases by 
about 15 um/mm

~150 um

• e.g. triple GEM 
(3/2/2/2) has a 
spatial resolution 
of ~240 um    
(=150 + 15 x 6) 

triple GEMs

double GEMs

single GEMs
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• Energy resolution: central for GEM detectors working in
proportional mode and other devices aiming for a measurement of the
deposited energy

triple GEMs
double GEMs

single GEMs
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• Efficiency: the probability of a trespassing particle to yield the
expected signal and, if applicable, to overcome a threshold value
needed have this signal recognized

triple GEMs double GEMs single GEMs
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• Spatial resolution: calculated by the Center of Gravity (COG) method
• 70% Ar + 30% CO2
• 150 GeV muon beam
• Strip: 150 um
• Space: 60 um

• Time resolution: used a Constant Fraction Discriminator (CFD) method
• 70% Ar + 30% CO2

and
90% Ar + 10% CO2

• Triple GEM better
• 70:30 gas better

Experiment data originally from 
[Rajendra Nath Patra, et al., Nucl. Instrum. Meth. A 906, 37-42 (2018)]
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• Primary electron transparency: defined as the fraction of electrons
that go through the first GEM foil

• Gas: 70% Ar + 30% CO2

X-ray source

free electron

150 GeV muon

free electron

• As the Edrift
increases, 
primary 
electron 
transparency 
decreases
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• Effective gain

Experiment data originally from 
[Rajendra Nath Patra, et al., Nucl. Instrum. Meth. A 
906, 37-42 (2018)]

• Efficiency
• Gas: 70% Ar + 30% CO2
• Input particle

• free electron
• beta source

• Gas: 70% Ar + 30% CO2
• Input particle

• X-ray
• free electron
• beta source
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• Single, double and triple GEMs

• Quadruple GEM

• Energy resolution deteriorates with more GEM layers

• Spatial resolution becomes poorer as the distance between the
first GEM and the anode increases

• Efficiency is not so relevant to the number of GEM layers at
appropriate HV

• Time resolution, spatial resolution, effective gain, efficiency and 
transparency are studied. Simulation and Experimental data are 
consistent.

• On going study: optimization of quadruple GEM structure 
design, Ion Back Flow rate, discharge effect…. 


