Simulation of multi-layer GEM detectors

Aera JUNG, Yong BAN, Dayong WANG, Yue WANG, Licheng ZHANG

- school of physics, Peking University (PKU), China

第十届全国先进气体探测器研讨会 (http://cicpi.ustc.edu.cn/indico/conferenceDisplay.py?confId=3793) online

1

• Motivation and Method

• Simulation results of single, double and triple GEMs

• Simulation results of quadruple GEMs

• Motivation and Method

• Simulation results of single, double and triple GEMs

• Simulation results of quadruple GEMs

- **Major advantage:** With a multi-GEM layer structure, a very high effective gain (up to 10⁶ with some gases) can be attained with each GEM layer working at an individually much lower gain thus avoiding discharge problems.
- Our group's simulation motivation:
 - Single, double and triple GEMs:

- There is not enough information to compare and understand the differences between single, double and triple GEMs seen in experiments and simulations.

- There are consistently seen difference in gain between simulation and experiment results.

• Quadruple GEM:

- Lower operating voltage, low discharge probability and low IBF make it more attractive for high radiation environments 4

Commercial software ANSYS + free software GARFIELD++

ANSYS : https://www.ansys.com/

design the detector geometry, set boundary conditions and optimize the mesh of the structure for the electric potential calculation of each finite element

simulation of the electron motions

01 Simulation model – GEM foil geometry and gas

- Schematics of single GEM detector
- Microscope view of GEM foil
- Standard hexagonal GEM foil

Y-COORDINATE

Fabio Sauli, The gas electron multiplier (GEM): Operating principles and applications, Nuclear Instruments and Methods in Physics Research A 805 (2016) 2-24

https://garfieldpp.web.cern.ch/garfield pp/examples/triplegem/

- The foil (e.g. 50 um thick kapton) is metalized on both sides (e.g. 5 um copper) and has a pattern of holes (e.g. 70 um with a 140 um pitch).
- Gas: Single, double and triple GEMs 70% Ar + 30% CO₂ triple and quadruple GEMs - 70% Ar + 30% CO₂ and 90% Ar + 10% CO₂

OI Simulation model – detector configuration in the simulation

	drift distance [mm]	transfer distance [mm]	induction distance [mm]	HV divider			readout
				drift field [kV/cm]	transfer field [kV/cm]	induction field [kV/cm]	snape
single	3	1 / 2	1 / 2	2	3.5	3.5	plate
double	3	1 / 2	1 / 2	2	3.5	3.5	plate
triple	3	1 / 2	1 / 2	2	3.5	3.5	plate
quadruple	4.8	2	2	HV Input Rajendra Nath Patra, et al., Nucl. 0.1M Instrum. Meth. A 906, 37-42 (2018)] 0.1M 1M 0.1M 0.1M 0.1M 0.1M			strip strip 150 um space 60 um pitch 210 um

• Motivation and Method

• Simulation results of single, double and triple GEMs

• Simulation results of quadruple GEMs

• Gain: given by the number of electrons created by each primary electron that reaches the anode

 Spatial resolution: key parameters for tracking systems and extracted from the <u>width of the residual distribution reached on</u> <u>the anode/readout plate</u>

- distance from the first GEM to the readout plate increases by about 15 um/mm
- e.g. triple GEM (3/2/2/2) has a spatial resolution of ~240 um (=150 + 15 x 6)

• Energy resolution: central for GEM detectors working in proportional mode and other devices aiming for a measurement of the deposited energy

• Efficiency: the probability of a trespassing particle to yield the expected signal and, if applicable, to overcome a threshold value needed have this signal recognized

• Motivation and Method

• Simulation results of single, double and triple GEMs

• Simulation results of quadruple GEM

•

• Spatial resolution: calculated by the <u>Center of Gravity (COG)</u> method

70% Ar + 30% CO2 150 GeV muon beam

Strip: 150 um

Space: 60 um

Time resolution: used a Constant Fraction Discriminator (CFD) method

70% Ar + 30% CO₂ and 90% Ar + 10% CO₂

Triple GEM better 70:30 gas better

Experiment data originally from14[Rajendra Nath Patra, et al., Nucl. Instrum. Meth. A 906, 37-42 (2018)]

- **Primary electron transparency:** defined as the fraction of electrons that go through the first GEM foil
- Gas: 70% Ar + 30% CO₂ •

- Effective gain
 - Gas: 70% Ar + 30% CO₂
 - Input particle
 - X-ray
 - free electron
 - beta source

Efficiency

- Gas: 70% Ar + 30% CO_2
- Input particle
 - free electron
 - beta source

Experiment data originally from [Rajendra Nath Patra, et al., Nucl. Instrum. Meth. A 906, 37-42 (2018)]

• Motivation and Method

• Simulation results of single, double and triple GEMs

• Simulation results of quadruple GEM

01 Summary

- Single, double and triple GEMs
 - Energy resolution deteriorates with more GEM layers
 - Spatial resolution becomes poorer as the distance between the first GEM and the anode increases
 - Efficiency is not so relevant to the number of GEM layers at appropriate HV

• Quadruple GEM

- Time resolution, spatial resolution, effective gain, efficiency and transparency are studied. Simulation and Experimental data are consistent.
- On going study: optimization of quadruple GEM structure design, Ion Back Flow rate, discharge effect....