

NORTHWESTERN POLYTECHNICAL UNIVERSITY

第十届全国先进气体探测器研讨会

半导体辐射探测器前端读出电子学ASIC芯片 研究进展

高 武

西北工业大学微电子学院 嵌入式系统集成教育部工程研究中心 辐射探测材料与器件工信部重点实验室

2021年10月22日

内容安排

NORTHWESTERN POLYTECHNICAL UNIVERSITY

探测器前端读出电子学ASIC概述

半导体辐射探测器读出电子学

口 主要功能

- 微弱电流信号读出
- 多通路信号处理
- 幅度测量
- 时间测量
- 口 解决方案
 - ・ ASIC + 嵌入式

从分立电子学到集成ASIC

▶ 条状多通路读出ASIC

- 电荷灵敏前放、高阶成形主放、峰值采样保持、数据转换器、数据预处理
- 特点: Big Analog, Small Digital (大A小D)

从分立电子学到集成ASIC

▶ 像素型二维读出ASIC

- 电荷灵敏前放、过域时间甄别器、像素级ADC/计数器、并入串出、高速串行接口
- 特点: Analog Islands in Digital Sea (数字海、模拟岛)

ASIC性能及特点

设计挑战一: 低噪声设计

> 等效噪声电荷(理想模型)

(P. Grybos, 2010)

设计挑战一: 低噪声设计

$$ENC = \sqrt{ENC_{w}^{2} + ENC_{f}^{2} + ENC_{i}^{2} + ENC_{const}^{2}}$$

$$\frac{ENC_{const}^{2}}{= \frac{0.469t_{p}qKT}{R_{n,hv}C_{n,hv}R_{o,hv}}} + \frac{KTR_{o,vdd}C_{f}^{2}(g_{m1} + g_{mb1} + g_{ds1} + g_{ds0})^{2}}{C_{nd}R_{nd}g_{ds0}^{2}} + \frac{KTR_{o,gnd}C_{f}^{2}g_{ds0}^{2}}{C_{ns}R_{ns}(g_{m0} + g_{mb0})^{2}}$$

ENC仿真和测试还是存在差距, 如何更精确?

设计挑战二: 抗辐射加固设计

≻ 总剂量效应 → 晶体管阈值电压负向漂移、 漏电流增加

 $-\varDelta V_t(N_{ot}) = -\varDelta V_{ot} \propto t_{ox}^{2}$

设计挑战二:抗辐射加固设计

▶ 单粒子效应 → 单粒子闩锁、单粒子翻转

设计挑战二:抗辐射加固设计

▶ 位移损伤效应 → 二极管、双极型电路 → 随机电报信号噪声

设计挑战三:测试与评估

- 口 电气性能测试
 - $Q_{max} \rightarrow T_p \rightarrow ENC \rightarrow P_d$
 - FOM (Figure of Merit)
- 口 连探测器能谱测试
 - 匹配性: 一致性、盲像元率
 - $\sigma \rightarrow$ Energy Resolution
- 口 抗辐射能力测试
 - TID: Co-60
 - SEE:重离子、质子
 - ・DD: 中子

$$FOM_{roc} = \frac{P_d \cdot \tau_p}{Q_{max} / ENC}$$

$$\sigma \approx \frac{A_Q \cdot ENC \times 2.35}{V_{LSB} \cdot \sum_{i=1}^{N} 2^i} \times 100\%$$

マルフナナジ NORTHWESTERN POLYTECHNICAL UNIVERSITY

国内外现状及动态

国内外主要研究单位

国内外主要研究单位

前端读出ASIC性能综述

前端读出ASIC性能综述

数据来源: 2000-2018年期间公开发布的辐射探测器前端读出ASIC

NORTHWESTERN POLYTECHNICAL UNIVERSITY

气体探测器前端读出ASIC

典型的气体探测器

□ GEM

- 特点:高位置分辨率、时间响应快
- 应用:天文射线探测、中子探测
- □ Micromegas
 - 特点:良好的空间和时间分辨率、 高增益、高计数率
 - 应用: 粒子物理、核物理和天体物 理实验
- 口 对前端读出电子学的要求
 - 多通路、快速响应、大动态范围、 低功耗

• Microscopic picture of a "standard" GEM

• The electric field lines in a hole within the kapton foil

Figure 3. The schematic of the Micromegas detector divided into two regions, the conversion/drift gap and the amplification gap.

GEM探测器ASIC

Fig. 5. AGET die photography, size 8.5 x 7.6 mm²,

- Fig. 3. Architecture of the AGET chip.
 - AGET, Saclay, France

Figure 2: Microphotograph of the TIGER chip (left) and the test bench setup used for the electrical characterization (right).

Figure 1: Block diagram of one channel

• TIGER, IHEP, China

Micromegas探测器ASIC

Figure 1. Evolution of the VMM ASIC.

• VMM, BNL, USA

Fig. 2 Cathode Readout Circuit Diagram

•CASEGEM, Tsinghua, China

气体探测器前端读出ASIC性能趋势

数据来源: 2000-2021年期间公开发布的辐射探测器前端读出ASIC

气体探测器前端读出ASIC性能趋势

数据来源: 2000-2021年期间公开发布的辐射探测器前端读出ASIC

NORTHWESTERN POLYTECHNICAL UNIVERSITY

西北工业大学前端读出ASIC研究进展

研发历程

解决方案:低噪声模拟前端

噪声建模及优化方案

抗辐射加固设计方案

低噪声多通路前端读出ASIC

HV 240V, Chip #6, Channel 65

Pixel detector, 1mm*1mm*3mm Am-241, FWHM 4.3% @ 59.5 keV

参数	性能指标(SENSROC8)
Detector	<mark>8×8阵列CZT晶体</mark> (Pixel size:1mm × 1mm× 3mm)
Process(μm)	CMOS 0.35um 3.3V MS
Channel No.	64
Input range(e-)	2k~247k
ENC (rms)	66 e-+14e-/pF (tested)
Consistency	< 3 %
Radiation Hardness	200 krad(Si)

1000

(NIM A, 2014, MEJ 2016)

低功耗前端读出ASIC

探测器 (CZT)

个人剂量仪

FOM=0.5 pJ

参数	性能指标
探测器	CZT探测器(3mm×7mm×3mm)
Process	CMOS 0.18µm 1.8/3.3V MS
die size	2.1 mm× 2.5 mm
Input Range	0.2 fC -15 fC
Linearity	< 3%
Gain	>100 mV/fC
ENC	112 e- + 17 e-/pF
Count rate	10 ⁵ (100 kCPS)
Power Diss.	1.74 mW/channel
Application	Electronic Personal Dosimeter

(TNS, 2018)

高计数率前端读出ASIC

(NSS-MIC, 2021)

低功耗前端读出ASIC

探测器 (Si-PIN)

FOM=0.59 pJ

参数	性能指标
探测器	Si-PIN探测器(2.7mm×2.7mm×3mm)
Process	CMOS 0.35µm 3.3V MS
die size	2.4 mm× 2.4 mm
Input Range	0.2 fC -15 fC
Linearity	< 3%
Gain	>60 mV/fC
ENC	119 e- + 5 e-/pF
Count rate	150 kCPS
Power Diss.	1.25 mW/channel
Application	Electronic Personal Dosimeter

(TNS, 2019)

前端读出ASIC应用

(NSS/MIC, 2020)

西工大研发的其他芯片

高分辨率TDC(2011) AMS 0.35µm CMOS

12位流水式逐次逼近ADC(2017) TSMC 0.18µm CMOS

12位单斜坡ADC(2012) AMS 0.35µm CMOS

MAPS高速数字读出(2020) TJ 0.18µm CMOS

A BDAC Dender R: HDAC Bunder C: KDAC IFT D: SRAM one Dende

抗辐射SRAM(2014) SMIC 0.18µm CMOS

14位单斜坡ADC(2021) GF 0.18µm CMOS

下一步工作1: 超低噪声计数型多路读出ASIC

参数	仿真结果
Process	CMOS 0.35µm
Detectors	Si-PIN Detector
Power supply	3.3 V
Die size	4.6 mm×8.8 mm
Energy range	0.08~1 fC
Shaping time	0.1,0.2,0.4, 0.7 <u>μS</u>
Linearity	<2.5%
Count rate	>1 Mcps
ENC	29 e- + 5 e-/pF
Power dissipation	<4.5 mW/channel
Application	X-Ray Diffractometer

下一步工作2: 像素型读出ASIC

参数指标	仿真结果
像素尺寸	75 μm × 75 μm
阵列大小	32×32
输入范围	0 ~ 10 fC
增益	60 mV/fC
等效输入噪声电荷	113 e-
计数范围	2×6 bits
功耗	42 μW/pixel
计数率	> 500 k/pixel
应用	彩色CT成像、天文望远镜

NORTHWESTERN POLYTECHNICAL UNIVERSITY

请各证专家批评指正 谢谢!