半导体核辐射探测晶体材料与 器件研究进展

徐亚东*

西北工业大学,辐射探测材料与器件工信部重点实验室, 凝固技术国家重点实验室 *Email: xyd220@nwpu.edu.cn

2021.10.22 第十届全国先进气体探测器研讨会

汇报提纲

- 一、辐射探测材料与器件工信部 重点实验室
- 二、碲锌镉晶体与器件研究进展
- 三、基于碲锌镉晶体终端器件开发
- 四、辐射探测用金属卤化物钙钛矿

1.1面向应用需求牵引

辐射探测材料和器件是推动微波、太赫兹、红外和核技术 应用不可缺少的工具和手段

医学成像

环境监测

安全检查

国防核技术

大科学装置--XFEL

工业在线检测

无损探伤

武器装备侦检

成为医学成像,环境监测,安全检查和在线检测等工业领域

核心器件,及提升武器装备性能的关键

1.2 实验室研究背景

□ 涉及领域: 雷达波 (频率GHz) ~ 伽马射线 (能量MeV)

口出发点:基于宽频谱电磁波与材料作用原理,开展探测材料 设计与合成、器件制备及系统集成

隐身图层

THz电光晶体

红外探测器

ASIC芯片

Visible

y射线探测器

Frequency (Hz)

1.3 建设目标与定位

辐射探测相关领域的应用基础研究与技术转化

开展探测器的材料合成与制备,元器件的设计与制造以及系统集成等,**建设研究平台**

面向"中国制造2025"中辐射探测领域新材料和元器件,服务于工业和信息化领域创新能力

形成不同辐射探测技术的**学科交叉、学术交流** 、**人才培养和成果转化中心**

1.4 实验室基本情况

学术委员会

主任:郝跃院士

副主任: 李言荣 院士

介万奇 教授

实验室

主 任: 徐亚东 教授

副主任:王涛教授、高武

教授、卿玉长 研究员

跨学科合作机制

- □ 材料学院
- □ 计算机学院
- □ 电子信息学院
- □ 机电学院

口 服务西北工业大学材料科学与工程一流学科建设的重要平台

1.5 研究方向与主要工作

研究方向

- 1. 新型辐射探测材料设计与合成
- 2. 辐射探测材料性能表征与器件设计制备
- 3. 辐射探测器信号读出芯片设计与器件集成

研究工作

应用基础 研究

重大关键 技术 产业共性 技术

1.6 研究水平与贡献

5年来,共承担各类科研项目69项,总经费3亿6千余万元。 其中,承担重点研发计划项目6项,国家自然科学基金16项, 国际合作项目6项,装发共用技术、军品配套等项目12项。

项目名称	项目类型	起止时间	资助金额 /万元	任务
多能谱光子计数X射线成像 仪的开发	国家重点研发计划	2016.9- 2020.8	4200	主持
高能束增材制造复杂结构无 损检测方法与装备研究	民机科研项目	2017.1- 2020.12	1760	主持
碲锌镉面阵探测材料与器件 研究	国家重点研发计划	2016.7- 2020.12	1455	主持
XXX探测器研制	军用电子元器件型谱项目	2017.1- 2019.12	980	主持
XXXX材料与结构研究	装发共用技术项目	2017.12- 2020.12	800	主持

1.6 研究水平与贡献

近5年,获国家级奖励1项,省部级奖4项,行业奖励2项

序号	奖励名称	级别 (国家/省部/行业)	时间
1	航空发动机用耐高温长寿命特种 功能材料	国家技术发明二等奖	2018年
2	***系列高温**材料	国防技术发明一等奖	2017年
3	太赫兹产生与探测用碲化锌基电 光晶体的制备技术	陕西省技术发明一等奖	2019年
4	制备大体积碲锌镉单晶的方法	中国专利优秀奖	2017年
5	高电阻率碲锌镉晶体的制备方法	陕西省专利奖一等奖	2018年
6	新型非制冷抗辐照红外探测材料 碲铟汞单晶及器件制备技术	陕西省技术发明二等奖	2019年
7	钙钛矿铌钛酸盐的介电响应与调 控机制	广西省自然科学二等奖	2017年

运行管理

"双基地"

即有实验场地近3000平米,其中,洁净实验室约700平米;次外,成果转化基地配套1500平米实验场地

汇报提纲

- 一、辐射探测材料与器件工信部 重点实验室
- 二、碲锌镉晶体与器件研究进展
- 三、基于碲锌镉晶体终端器件开发
- 四、辐射探测用金属卤化物钙钛矿

2.1 近年来总体研究思路

II-VI族碲化物半导体材料和器件

关键问题

材料

液/固界面失稳

缺陷种类复杂

载流子输运性能差

器件

限制器件灵敏体积

恶化器件光电性能

降低器件收集效率

研究工作

2.2 学术贡献一: 大尺寸单晶生长

■ 提出了熔体法晶体生长的平界面控制原理,揭示了ACRT 技术影响熔体对流的规律

难点

- 热导率低=>凹液面生长, 形成多晶
- 分凝现象=>成分不均匀

温度场优化

多场耦合及溶质分凝的数学模型和计算方法

宏观/微观界面调控

Y. Xu, et al., IEEE TNS, 2009, 56: 2808. H. Zhang, et al., CGD, 2017, 17: 6426. 专利: ZL200710017996.7, ZL 201310489066.7

学术贡献一:大尺寸单晶生长

■ 发展了籽晶非化学计量比的生长方法,突破了直径100 mm 碲锌镉晶体的制备技术

晶体生长多场计算结果

R. Yang, Crys. Res. Tech. 2014, 49, 353.(封面论文) Y. Xu, Opt. Mater. Express, 2016, 6, 3309. 专利: ZL201510468818.0, ZL201610556029.7

学术意义和实施效果

口同行评价

IEEE-RTSD主席 Ralph James教授 And

JCG期刊副主编 Andrea Zappettini教授

……阐明了关于CdZnTe晶体生长的 重要细节以及成分偏析规律……

2013年国家技术发明 二等奖

2.3 学术贡献二:晶体缺陷表征与调控

■ 建立了II-VI族碲化物晶体中富Te相的"十四面体"模型, 诠释了富Te相与诱导位错的交互作用机制

Y. Xu, et al, Phys. Status Solidi B, 2017, 254, 1600474 (封面论文). Y. Xu, et al, CrystEngComm, 2015, 17, 8639. Y. He, et al, Scripta Materialia, 2014, 82, 17.

学术贡献二:晶体缺陷表征与调控

■ 基于对富Te相热力学和动力学描述,发明了气氛可控退火方法,实现富Te相消除率在90%以上

对富Te相形貌演化的动力学描述

"富Te相解离"和"富Te相迁移"退火机制

退火过程的热力学参数优化

实现大于5 μm的富Te相消除率η>90%

 $\eta = (90.2 \pm 0.8)\%$

Y. He, Scripta Materialia, 2014, 82, 17. Y. Xu, ACS photonics, 2018, 5, 556 专利: ZL201610817494.1, ZL201110067191.X

学术意义和实施效果

口同行评价

III-V族InP晶体

…从动力学角度 出发,局部的冷 却速率严重影响 了析出相的表面 形貌…

IV-VI族SnTe晶体

…参考Xu等研究 结果,发现退火 后SnTe晶体{111} 面的位错滑移同 样呈螺旋状...

口 专利奖

- ◆ 2017年中国专利优秀奖 (ZL200710017996.7)
- ◆ 2018年陕西省专利奖一等奖 (ZL200710018784.0)

2.4 学术贡献三:器件设计和制备

发现了制约碲锌镉探测器电荷收集效率的关键因素,并提 出了优化器件结构和改善电极的方法

器件响应均匀性差

- 像素间信号串扰
- 空穴拖尾

基于权重势场的电极结构设计

线阵探测器

像素探测器

学术贡献三:器件设计和制备

■ 发明了探测器倒装和模块封装技术,提高了器件的能量分辨率,解决了探测器可靠性和环境稳定性

难点

- **◆ 电极附着力差**
- ◆ 器件漏电流大,
 界面态密度高

漏电流抑制

CZT像素探测器倒装

典型核素能谱 ¹³⁷Cs@662 keV

R. Guo, et al., Chinese Phys. B, 2018, 27, 127202 (亮点文章) 专利: ZL201310488594.0, ZL201310489066.7

学术意义和实施效果

国内外多家权威机构检测报告:开发出的碲锌镉晶体材料与器件性能总体处于国际先进水平

...Redlen device with a measured FWHM of **2.6%** while the NWPU device showed an improvement FWHM of **2.2%**.....

英国卢瑟福国家实验室

"拉脱维亚RITEC公司"等 测试报告

同方威视股份有限公司

口 发明奖

- ◆ 2019年陕西省技术发明一等奖
- ◆ 2017年陕西省国防科技进步奖一等奖

与国外技术的对比

本成果		美国 eV	加拿大 Redlen	
晶体生长方法	晶体生长方法 常压熔体法		移动加热器法	
电阻率 (Ω·cm)	> 10 ¹⁰	> 10 ¹⁰	$>5 \times 10^9$	
μτ値 (cm ² V ⁻¹)	$> 2 \times 10^{-3}$	~10-3	$1 \sim 3 \times 10^{-3}$	
生长速度 (mm/day)	20	20	3~6	
晶体利用率	> 50%	4%~15%	50%	
工艺特点	成本低,可控性好	成本高	生长效率低	

国外技术的数据来自其公司网页,本项目数据来自陕西材料分析测试中心测试报告

晶体性能国际先进,生产效率高3倍,成本降低50%

典型探测器及其性能

单元探测器与核素分析仪

线阵探测器与骨密度仪

像素探测器与伽马相机

2.5 服务国家战略需求

口深空探测:实践十号卫星、XTP卫星样机

研制的CZT空间粒子探测器成功应用于"**实践十号"返回式卫星**,获得了生物细胞的空间辐射环境数据。

与以往在轨的Si探测器相比: 其探测上限由8.13MeV提高到95MeV, 提高了10倍以上

★ 国家重大科学仪器设备开发专项,中科院空间科学先导专项

2.5 服务国家战略需求

口国防核技术:已为西北核技术所和中国工程物理研究 院研制了36台/套探测器和装置

开发出大尺寸 CZT电流型探测器, 成功用于我国*** 核科学试验任务中 "强脉冲伽马辐射 场"的现场诊断。

摆脱国外技术封锁和进口限制

为***武器性能鉴定提供关键仪器

2.6 对接国家经济社会发展需求

口 数字诊疗装备:合作研制骨密度仪,牙科CT等

开发出多能谱光子计数X射线 探测器模块,能量分辨率达到<mark>国际</mark>

先进水平

已应用上海联影医疗科技,合肥美亚光电股份有限公司等10余家企业

条形阵列碲锌镉 探测器,2014年 中国国际工业博 览会**特等奖**

用户使用 报告 更短的扫描时间 (1/10-1/20) 更低的射线剂量 (1/5-1/10) 核心专利:

ZL 201310488594.0

ZL 201310489066.7

2.7 参与大科学装置预研

口 欧洲X射线自由电子激光-LPD研制

大面积CZT像素探测器的制备

NPU贡献
◆ 像素电极加工
◆ Flip-flip-chip倒装

80x80 像素

关键性能指标: 能量分辨率 0.8 keV FWHM @ 59.5 keV; 2.7 keV FWHM @ 122 keV

斯坦福直线加速器 (SLAC)测试

Nucl. Instrum. & Meth. A, 2019, 927: 37

★ 国家重点研发计划 "政府间国际科技创新合作"重点专项等

2.8 技术标准的制修订情况

□ 围绕辐射探测技术与应用,近5年,制定国家标准1 项, 国军标3 项,地方标准1 项

序号	标准名称	标准类型	状态
1	X射线和γ射线探测器用碲锌镉单晶材料规范	国标	已发布
2	CSL-HS-1A型碲锌镉伽马射线能谱传感器详 细规范 (Q/NWPU 30001-2018)	国军标	已发布
3	CSL-HS-2A型碲锌镉大剂量辐射传感器详细 规范 (Q/NWPU 30002-2018)	国军标	已发布
4	CSL-HS-3A型碲锌镉辐射成像器件详细规范 (Q/NWPU 30002-2018)	国军标	已发布
5	土壤重金属元素的测定能量色散X射线荧光光 谱法 (DB61/T1162-2018)	陕西省地方 标准	已发布

汇报提纲

- 一、辐射探测材料与器件工信部 重点实验室
- 二、碲锌镉晶体与器件研究进展
- 三、基于碲锌镉晶体终端器件开发
- 四、辐射探测用金属卤化物钙钛矿

3.1 辐射剂量监测

■ 应用一: 个人辐射剂量计

国内首台基于CZT的个人辐射剂量仪

专业款

民用款

软件界面

特点:

- 1. 灵敏度高
- 2. 结构紧凑
- 3. 纯国产化

应用场景:

- 1. 军工
- 2. 医疗
- 3. 核电
- 4. 民用

探测器	灵敏度	能量下限(keV)	是否需光电倍增管	体积
Si	极低	15	不需	很小
GM管	低	50	不需	较大
CZT	高	15	不需	很小
Csl	中等	30	需要	较大

3.1.1 辐射剂量监测

■ 应用二: 低能量宽量程剂量监测模块

特点:

- 1. 能量下限10keV,低于GM管
- 2. 剂量范围: 0.1uGy/h~10Gy/h

CZT探测器

中核404 R项目

试结果 Results	Ave. Ave.	ICIN T	1211/
kV/keV	参考值(#Gy/h)	测量结果(PGy/h)	相对误差(%)
N15/12	51.8	49.64	-4.2
N20/16	54.3	47.82	-11.9
N25/20	47.6	49.55	4.1
N30/24	51.1	52.89	3.5
N40/33	49.5	52.56	6.2
N60/48	51.5	58.90	14.4
N80/65	58.7	62.88	7.1
N100/83	55.1	62.67	13.7
N120/100	61.3	59.19	-3.5

Energy/keV

首次解决了CZT的能量响应问题

3.1.2 能谱分析与核素识别

■ CZT核素识别探头

尺寸: 10*10*5 mm³

15*15*7.5 mm³

1. 能量范围: 10KeV~3MeV

2. 能量分辨率: 4%~5% @59.5 keV , 1%~1.8%@662 keV

能量分辨率 高于 Nal和LaBr

典型案例: 便携式核素识别仪CZT-PES

- > 小体积探头适合狭小空间的核素识别
- 大体积探头(>2000 mm³) 适合探测60Co等高能核素

	探测器	灵敏度	适合的剂量场
	CZT	受限尺寸	10uGy-100mGy/h
	Nal	较高	
	LaBr	较高	0.1uGy-几十uGy/h
=	高纯Ge	较高	

多种核素

3.2 气溶胶监测

■ 国内首款CZT α粒子探测器

主要应用: 气溶胶、α谱仪、氡测量

CZT与pips的能量分辨率相当

3.2.1 气溶胶监测

■ CZT α监测

探测器	温度范围 (℃)	能量分辨率 <1%@5.48MeV	是否可 耐擦拭	价格	伽马补偿
Pips	-20-40	满足	是	较贵	伽马效率低
CZT	-20-70	满足	是	适中	伽马效率高

CZT与pips的探测效率比较

3.2.2 气溶胶监测

■ CZT β监测

探测器	温度范围 (℃)	能量分辨率	探测效率	价格	伽马效率
Pips	-20-40	满足	偏低	较贵	低
CZT	-20-70	满足	高	适中	高

3.2.3 氡监测

■ CZT测氡模块

室内天然氡测量

3.3 X/γ-射线成像

■ CZT大尺寸像素探测器

可在探测器的每个像素上实时显示放射 源的能谱

能量范围: 20keV~3 MeV

像素尺寸: >=70um

漏电流: < 30nA/cm²

计数率~10⁷ cps/mm²

3.3.1 伽马成像

■ 基于CZT的伽马相机

能量范围: 20KeV~3MeV

能量分辨率: <1.2% (662 keV)

探测器尺寸: 22*22*15 mm3

像素尺寸: 1.1mm

3.3.2 X射线成像应用开发

X射线多能骨密度仪

	GE Lunar	鑫高益	迪泰克
扫描速度	快	慢	<mark>快</mark> (全身5min)
扫描部位	全身	局部	全身
辐射剂量	低	中	低
准确度	1%	中	1%
技术来源	自主研发	韩国 OsteoSys	自主研发

	医院报告 BMD	计算 BMD
桡骨	$0.71\mathrm{g/cm^2}$	$0.68 \mathrm{g/cm^2}$
尺骨	$0.71 \mathrm{g/cm^2}$	$0.71 \mathrm{g/cm^2}$

 $r \rightarrow r \rightarrow \perp r \rightarrow \perp r$

11

软件界面

汇报提纲

- 一、辐射探测材料与器件工信部 重点实验室
- 二、碲锌镉晶体与器件研究进展
- 三、基于碲锌镉晶体终端器件开发
- 四、辐射探测用金属卤化物钙钛矿

4.1金属卤化物钙钛矿X/γ射线探测材料

\triangleright X-/ γ -ray detector——可调的成分和带隙,以及较低的成本

> X-ray imaging

3. S. Yakunin et.al. *Nature Photonics*, **2015**, 9, 444-449

4. Y. C. Kim et al. Nature, 2017, 550, 87-91

- 1. Wei et.al. *Nature Materials*, **2017**, 16, 826-833.
- 2. Shrestha et.al. *Nature Photonics*, **2017**, 11, 436-441

近年来相关的研究工作

◆ 钙钛矿体单晶生长

- 溶液法生长钙钛矿单晶
- 熔体法生长 $CsPbBr_3$ 单 晶及Bi基钙钛矿晶体

Cryst. Growth Des. 2017, 17, 6426-6431.

J. Mate. Chem. A, 2018, 6, 23388

- ◆缺陷表征与半导体 探测器制备
- 二次相缺陷
- 结型与复杂电极探测

J. Phys. Chem. Lett. 2020, 11, 5625–5631.

ACS Appl. Mater. Interfaces, 2019, 11, 7522-7528

◆X射线平板探测器

• Cs₂Tel₆厚膜材料及器 件

ACS Photonics 2019, 6, 196–203 ACS Appl. Mater. Interfaces, 2021, 13, 23928–23935

4.2 溶液法生长有机无机杂化钙钛矿体单晶

◆ 揭示了晶体生长各项异性与溶质传输过程的关系,获得厘米尺度不同形态的MAPbBr₃

◆发现并解决了FAPbBr₃的第二相问题,生长出电阻率达10⁹ Ω·cm的 FPB晶体,室温下实现对γ射线的识别

改进的溶液法生长全无机钙钛矿体单晶

> 基于物相随初始原料的变化规律建立了溶液法生长相图,生长出厘

米级CsPbBr3单晶

➤ 发明了结晶提纯技术,通过调控逆温生长 (ITC)法的结晶速率,获

得高质量的单晶

With seed

Without seed

4.3 垂直布里奇曼法生长Bi基钙钛矿体单晶

获得了尺寸Φ15x60 mm³的Cs₃Bi₂I₀晶体,揭示了光电性能各项异性的机理,实现对α粒子的全能峰的识别

与2D结构相关的光学、电学各项异性

弱的极化效应

4.4 CsPbBr₃晶体中的二次相

◆ 阐明了垂直布里奇曼(VB)法和逆温结晶(ITC)法制备的CsPbBr₃ 晶体中二次相的组分特征、三维形貌、形成机制和形貌演变规律

CsPb2Br5相对CsPbBr3晶体光电性能影响

- CsPb₂Br₅相尺寸和分布 CsPbBr₃晶体光学响应
- 晶体结构与能带差异

CsPbBr3晶体载流子传输性能

4.5 探测器制备与表征

◆ 制备出AZO/MAPbBr₃/Au 结型探测器,通过退火调控势垒和界面态密度

• 势垒: 0.757 eV => 0.849 eV

界面态密度: 3.8×10⁹ cm⁻² => 8.7×10⁸

◆ 优化CsPbBr₃探测器电极结构,一定程度抑制离子迁移,实现器件

工作在较大的偏压下和高的灵敏度

4.6 探测器结构设计

◆ 发现电子与空穴迁移率寿命积比值是影响能量分辨率的关键参数, 为减少信号拖尾,开展复杂电极探测器设计与制备

平面探测器能量分辨率仿真

◆准半球以及像素CsPbBr₃探测器

理论能量分辨率

Unpublished

4.7 X射线平板探测器XFPD

a-Se film from Hamamatsu for x-ray mammography

Large-Area CsI films from RMD

Based on

TFT: Thin Film Transistor

CMOS: Complementary Metal Oxide

Semiconductor

◆ a-Se will be crystalized over 50°, and the efficiency is limited as lower Z (34).

需求

- ✓ 大面积厚膜
- ✓ 低温制备
- ✓ 低成本、无毒等

Direct mode

B. Direct AMFPI: X-rays to charge

X射线成像用厚膜材料

· 采用静电辅助喷雾成膜技术制备出Cs。Tel。厚膜材料,具有较高的环 境稳定性,并实现了对X射线探测

承受水冲刷

高电阻率、无铅、全无机、空气稳定和低温制备等 X射线探测灵敏度达到商用α-Se

柔性X射线探测器

◆ 开展了基于柔性衬底的Cs2Tel6厚膜生长和探测器的制备,验证了弯 曲试验条件下探测器仍具有高的灵敏度

结构紧凑&无需图像校正

舒适度&低辐射计量

尺寸100 cm²的Cs₂Tel。厚膜

Bending radius (mm)

X-ray成像结果

结 束 语

■ 围绕高能射线探测,实现晶体生长-缺陷调控-器件设计和制备

To explore the lead-free perovskite for X/γ-ray spectroscopy and imaging (基础研究);

➤ To form stable and reliable industrial production capacity for 4-inch CZT (工程化)。

谢谢!

