

刘帅毅 代表CEPC漂移室PID工作团队

第十一届全国先进气体探测器探讨会, 2023年10月12日-14日, 北京大兴

- •简介
- •模拟研究
- •模型测试
- •总结

CEPC(Circular Electron Positron Collider)

 CEPC (Circular Electron Positron Collider, 环形正负电子对撞机) 设计为周长100 km的双环双对撞 点的对撞机

Operation mode		ZH	Z	W ⁺ W ⁻
\sqrt{s} [GeV]		~240	~91.2	158-172
Run time [years]		7	2	1
CDR	$L / \text{IP} [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	3	32	10
	$\int L dt $ [ab ⁻¹ , 2 IPs]	5.6	16	2.6
	Event yields [2 IPs]	1×10 ⁶	7×10 ¹¹	2×107
Latest	$L / \text{IP} [10^{34} \text{ cm}^{-2}\text{s}^{-1}]$	5	105.5	18.7

2023/10/14

CEPC第四个探测器设计方案中的漂移室

漂移室的优势

- 粒子鉴别
 - •减少组合本底
 - 提高质量分辨
 - 提高喷注能量分辨
 - 有助于味标记
- 寻迹
 - 在低动量下有更好的动量分辨

漂移室的初步设计

漂移室的初步参数				
内径	800mm			
外径	1800mm			
单元大小	18 mm×18 mm			
气体混合比	He/iC ₄ H ₁₀ =90:10			
最外侧丝的长度 (cosθ=0.82)	5143mm			

dE/dx 测量

- 电离能损(dE/dx) 通过对波形积分进行测量
- •包含初级电离和次级电离的涨落, 服从朗道分布

dE/dx方法的问题

- 多项误差来源
 - 平均电离能的涨落
 - 单个cluster可能释放一个或多个电子
 - 雪崩放大的涨落
- 朗道分布采用截断平均法, 丢失统计量
- 在过去40年内分辨没有显著提高
 - 1983: $dE/dx res. = 5.7 \times L^{-0.37}(\%)$
 - 2021: $dE/dx res = 5.4 \times L^{-0.37}(\%)$

From Micheal Hauschild's talk @RD51 workshop

电离计数方法 (dN/dx 测量)

- •探测单位径迹长度上的初级电离团数目
- •初级电离团数服从泊松分布,有更好的分辨,预期能提高PID性能
- •关键技术:
 - 高采样率低噪声电子学
 - 高性能寻峰算法(处理信号堆积, 识别噪声)

dN/dx 测量的挑战

• 信号测量的挑战

•探测器设计,低漂移速度、低电离团密度气体 ——— 增加不同电离团信号的时间间隔

电离团信号快速成型, 压低噪声

- •低扩散、压低多电子电离团的气体 ——— 减少不同电离团之间的干扰
- 快速电子学
 - 带宽 > 1GHz
 - 前放增益>10
 - 采样率>1.5GS/s
 - 比特分辨>12bit

• 重建算法的挑战

- 处理信号堆积
- 去除噪声干扰
- 识别初级和次级电离信号

*dN/dx*原理由 A. Davidenko et. al. 在 1969 年首次提出,由于硬件技术的限制,尚未在大型实验应用过 (JETP, 1969, Vol. 28, No. 2, p. 223)

随着电子学技术的发展,使得*dN/dx*的应用成为可能。目前包括FCC-ee, CEPC, ILC 等均提出 2023/10/14 了应用*dN/dx*技术的大型气体探测器方案

- 传统算法
- 机器学习算法

模拟研究

2023/10/14

- 重建算法的挑战
 - 处理信号堆积
 - 去除噪声干扰
 - 识别初级和次级电离信号
- 两种方案正在研究
 - 传统算法(已完成)
 - 基于二阶求导的寻峰+次级电离聚团
 - 基于深度学习的算法 (研究中)
 - 基于循环神经网络(LSTM)的寻峰 + 基于图神经网络(DGCNN)的聚团

聚团

- 通过合并相邻的信号峰得到初级信号数
- 如果 Δ*t* < *t*_{cut}, 就将峰合并为电离团
- *t_{cut}* 与扩散时间有关,从模拟中估计得到

- •优势:简单快速
- •劣势:在高堆叠、高噪声下效率较低
- •开发完成,已用于数据分析

K/π 分辨能力随动量的变化(传统算法)

K/π 分辨能力随角度 cos θ 变化(传统算法)

基于深度学习的算法

- 深度学习的优势:
 - 利用大统计量样本进行监督学习,充分提取数据特征
- 算法开发:
 - 寻峰算法: 循环神经网络(LSTM)
 - 聚团算法: 图神经网络(DGCNN)

LSTM + DGCNN对于N_{cls}的重建结果

重建方法	μ	σ	σ/μ
MC truth (输入)	16.53	3.93	23.8%
传统算法	18.67	4.60	24.6%
深度学习	16.65	4.06	24.4%

深度学习LSTM + DGCNN算法相比2023/10/14传统算法更加接近MC truth分布

LSTM的寻峰结果

LSTM algorithm

Derivative algorithm

于堆积事例更加高效 18

漂移室模型测试

- 目的
 - 验证电离计数方法的可行性
 - 研究电离计数方法的关键技术
- 目前进行的测试
 - 放射源测试
 - 束流测试

基于Sr90放射源的漂移管测试

- 放大器带宽~1GHz
- ADC采样率1GHz

2023/10/14

漂移室模型的束流测试

- •与INFN合作完成了3轮束流测试
 - 数据分析正在进行中
 - 已有初步的寻峰结果,算法正在优化中

2023/10/14

束流测试数据的深度学习重建算法

基于最优传输的模型,解决真实数据的训练问题

利用MC数值实验进行验证,性能接近理想模型 ROC CUN pAUC (FPR<0.1) Model AUC 理想模型 0.926 0.812 Source RNN 0.878 0.749 Unsupervised 0.895 0.769 DeepJDOT Semi-supervised 0.793 0.912 DeepJDOT 0.4 0.6 False positive rate (fake rate)

- MC数值实验:利用MC样本和伪数据样本进行测试
- 理想模型:利用MC标注样本的全监督模型

总结

- 在CEPC的漂移室设计中将采用电离计数方法以获得更好的粒子鉴别能力
- •初步模拟研究表明
 - 与传统的dE/dx相比, dN/dx有更好的 K/π 鉴别能力, 20GeV/c达到 2σ 以上
- •开展了基于放射源和束流的模型测试,正在进行中
 - 初步验证了电离计数方法用于粒子鉴别的可能性
- •工作计划
 - 重建算法的调试和优化
 - 实验数据分析
 - 探测器设计优化

25

Thanks!

backup

2023/10/14

漂移室探测原理-基于电离测量

2023/10/14

重建算法的两个步骤

- 基于RNN的数据结构: LSTM
- 在峰的候选者中信号与噪声的分类

- 基于GNN的数据结构: DGCNN
- 相邻节点间传递信息 ⇔ 时间信息上来自于同一个 初级簇团的电子簇团化
- 初级电离电子与次级电离电子的分类

LSTM和导数寻峰算法的比较

由于更好的堆叠电子的重建能力,LSTM相 比导数方法有更好的AUC(area under curve, 曲线下面积) 2023/10/14

深度学习算法的表现

MC truth(输入)16.533.9323.8%传统算法18.674.6024.6%深度学习16.654.0624.4%		重建方法	μ	σ	σ/μ
传统算法18.674.6024.6%深度学习16.654.0624.4%		MC truth(输入)	16.53	3.93	23.8%
深度学习 16.65 4.06 24.4%		传统算法	18.67	4.60	24.6%
	2022/10/14	深度学习	16.65	4.06	24.4%

电离团数分布的中心 值和分辨更加MC truth输入一致

上升沿时间计算方法

- 减去基线后的ADC绝对值大于0.02
- •采用局部最高点减去最近的拐点
- 局部最高点根据一阶导数由负到正的零点决定
- 拐点由二阶导数由正到负的零点决定
- 一阶导数计算方法D1[i] = wf[i+1]-wf[i]
- •二阶导数计算方法D2[i] = D1[i+1]-D1[i]

