

为TOF-PET开发的一种 非常薄的MRPC

刘佳宁,王义,李元景 清华大学工程物理系 2023-10-13

• Uses difference in photon detection times to guess at tracer emission point • without timing info, emission point could be anywhere along line • $c = 3x10^{10}cm/s$, so $\Delta t = 600 \text{ ps} \sim \Delta d = 10 \text{ cm}$ in resolution timing resolution timing resolution $\Delta d = c \Delta t/2$ $\beta^* + e^*$ annihilation

■ 传统 TOF-PET

闪烁体探测器 + PMT

- ▶ 时间分辨不够高 > 50ps
- ▶ 闪烁体本身厚度 > 3cm
- ▶ 接收度小,浪费了很多信息
- → 检测时间长,精度差

MRPC TOF-PET

优势

- ▶ 时间分辨率优秀 < 20ps
- ▶ 超薄的灵敏区~100µm
- ≻ 大面积 → 可做全身PET
- → 弥补单层探测器效率低的缺陷

20 gas gaps double-stack MRPC with Multi-layer Copper Converters

[S. Razaghi et al. 2021]

Monte Carlo simulation study of RPC-based 0.511MeV photon detector

[W. Zhou et al. 2014]

RPC-PET for small animals

[Paulo Martins et al. 2014]

通过增加转换体和气隙的个数来增加探测效率 → 低时间分辨、低定位精度

- ★ 制作一个4室32气隙,气隙宽度128μm的MRPC原型机
 ☑ 对宇宙线的时间分辨 < 20 ps; 对gamma的时间分辨 < 58 ps
- ★ 制作一个超薄8气隙, 气隙宽度128µm的MRPC原型机

☑ 灵敏区厚度 < 5 mm

☑ 对宇宙线的时间分辨 < 39 ps; 对gamma的时间分辨 < 50 ps

★ 建造一个TOF-PET系统

在²²Na源两侧各放置3个8气隙的MRPC探测器进行定位,每个MRPC的电子学单独读出 □ 定位精度 < 3 mm

- ★ 制作一个超薄、高探测效率、高时间分辨的RPC原型机
 - ☑ 灵敏区厚度 < 3 mm
 - □ 时间分辨 < 20 ps
 - □ 探测效率 > 7%
 - □ 能量分辨 < 20%

MRPC原型机 + 快速放大器 + 快速采样系统

insulation readout strips HV layer plates gas gap

	MRPC prototype	
gas gap thickness	128 µm	
number of gas gaps	4 chambers \times 8 gaps	
glass material	low resistivity glass	
glass thickness	400	
readout strips	5 mm in width (2 mm clearance)	

16.44 ps

4室32气隙MRPCgamma测试

Time difference

Time difference

Entries

时间分辨: 58 ps

超薄、高时间分辨MRPC样机的研发

R

■ 探测器厚度对时间分辨的影响

$$\Delta L = t_A + \frac{x_A}{c} - \left(t_B + \frac{x_B}{c}\right) = \Delta t + \frac{x_A}{c} - \frac{x_B}{c} \qquad \sigma_{\Delta L}^2 = \sigma_{\Delta t}^2 + \left(\frac{1}{c}\right)^2 \sigma_x^2 * 2, \ \sigma_x = \frac{\text{Thickness of MRPC}}{\sqrt{12}}$$

超薄MRPC样机的生产

前放电子学

单室8气隙MRPC宇宙线测试

单室8气隙MRPCgamma测试

单光子时间精度: 71.2/√2~50 ps

超薄、高时间分辨、高探测效率 RPC-PET

- 模拟得到传统 MRPC (气隙宽度128μm) 对 0.511MeV伽马光子:
 - 1气隙探测效率约为0.2%
 - 1室8气隙探测效率约为1.5%

[A. Breskin et al. Israel 2000]

◆ 性能指标:

时间分辨: <20ps 探测效率: 6.4% 灵敏区厚度: <3mm 能量分辨率: 优于20%

◆ 切伦科夫辐射体(silica)中光程差的计算

Thickness of silica	Time in silica(average)	Time in silica σ	Detection efficiency
7cm	491ps	70ps	16%
5cm	372ps	52ps	13%
3cm	241ps	32ps	8.7%
2cm	164ps	20ps	6.4%
1cm	80ps	8ps	3.2%

K-Cs-Sb+CsI 电场强度~180 kV/cm, 暗电流~0.04 μA、0.03 μA

口在²²Na源两侧各放置3个8气隙的MRPC探测器进行定位

□发展高时间分辨、高探测效率 RPC-PET

研发更合适的切伦科夫光→电子转换体,改善镀膜工艺

- ◆ 完成4室32气隙的MRPC原型机的研发和测试
 - ▶ 对宇宙线的时间分辨: 20 ps
 - ▶ 对0.511MeV gamma 的时间分辨: 58 ps
 - ▶ MRPC探测器的厚度影响对gamma的时间分辨
- ◆ 完成超薄8气隙MRPC原型机的研发和测试
 - ▶ 对宇宙线的时间分辨: 39 ps
 - ▶ 对0.511MeV gamma 的时间分辨: 50 ps
 - ▶ 不同粒子与MRPC探测器的不同作用方式影响时间分辨
- ◆ 提出一种超薄、高时间分辨、高探测效率 RPC
 - ▶ 使用转换体来提高探测效率 → 效果有限
 - ▶ 通过增加气隙的个数来提高探测效率 → 定位精度变差
 - ▶ 采用切伦科夫辐射体和复合光阴极 → 提高单气隙的探测效率到6.4%

Thanks For Your Attention!

(liu-jn20@mails.tsinghua.edu.cn)

