

The effect of initial nuclear deformation on dielectron photoproduction in hadronic heavy-ion collisions

Jiaxuan Luo (罗加宣)

Phys. Rev. C **108**, 054906 (2023)

State Key Laboratory of Particle Detection and Electronics, Department of Modern Physics, University of Science and Technology of China (ljx16@mail.ustc.edu.cn)

Motivation and Introduction

 \triangleright Initial nuclear deformation

Dielectron photoproduction in deformed heavy-ion collisions

\triangleright Summary

Photon-induced Process

 Ultra-relativistic charged nuclei produce highly Lorentz contracted EM field \triangleright Weizsacker-Williams equivalent photon approximation (EPA):

 \checkmark Transverse EM fields are equivalent to a flux of quasi-real photons

- \checkmark Large quasi-real photon flux $\propto Z^2$
- \checkmark $p_{T,max} \sim \frac{\hbar c}{R}$, 30 MeV @ RHIC & LHC

> Photoproduction process:

 \checkmark Photon-nucleus interactions: Vector meson

 \checkmark Photon-photon interactions ($\propto Z^4$): dileptons

Dilepton Production in Peripheral Collisions

 \geq Conventionally believed to be only exist in ultra-peripheral collisions ($b > 2R_A$, UPCs) to satisfy the coherence condition

 \triangleright Significant enhancements of e^+e^- production at very low p_T in peripheral collisions ($b < 2R_A$)

 \triangleright Photon-photon interactions can explain the observed enhancements in spherical Au + Au collisions \triangleright In hadronic U + U collisions: nuclear charge number vs. initial nuclear deformation

Photoproduction in Isobaric Collisions

 \Box $^{96}_{44}Ru + ^{96}_{44}Ru$ and $^{96}_{40}Zr + ^{96}_{40}Zr$: the dependence of the observed excesses on nuclear charge number Z

Initial Nuclear Deformation

 \triangleright Nuclear charge density:

$$
\rho_{sph}(r) = \frac{\rho_0}{1 + e^{(r - R_0)/a}}
$$

 \triangleright The shape: ellipsoid

$$
√
$$
 rotational ellipsoid $ρ($ \vec{r} $) = ρ(r, θ)$

$$
√
$$
 a prolate spheroid when $β_2 > 0$

 \triangleright The charge density of a deformed nucleus:

 $\rho_{\vec{v}}(\vec{r}) = \rho[R_z^{-1}(-\varphi_v)R_y^{-1}(\theta_v)R_z^{-1}(\varphi_v)\vec{r}]$

 \checkmark the direction of the major axis: $\vec{v} = (\sin \theta_v \cos \varphi_v, \sin \theta_v \sin \varphi_v, \cos \theta_v)$ $\check{\mathcal{V}}$ is isotropic in the surface of the unit sphere

Deformed heavy-ion collisions: two limiting cases

Body-body: $\overrightarrow{v_1} = \overrightarrow{v_2} = (\pm 1, 0, 0)$ $\overrightarrow{v_1}$ Tip-Tip: $\overrightarrow{v_1} = \overrightarrow{v_2} = (0, 0, \pm 1)$

$$
\rho(\vec{r}) = \frac{\rho_0}{1 + \exp[\frac{r - R_0[1 + \beta_2 Y_2^0(\theta) + \beta_4 Y_4^0(\theta)]}{a}]}
$$

Nucleus $\left| R_0(\text{fm}) - a(\text{fm}) \right|$ β_2 β_4
 $\frac{238}{92} \text{U} \left| 6.8054 - 0.605 - 0.2863 - 0.093 \right|$

Body-Body $\chi(b)$ Tip-Tip $X(b)$

Equivalent Photon Flux

 \triangleright The photon flux with energy $\omega =$ 1 GeV in $U + U$ collisions at $\sqrt{s_{NN}}$ = 193 GeV

$$
n(\omega,\vec{x_\perp}) = \frac{4Z^2\alpha}{\omega} \left| \int \frac{\mathrm{d}^2\vec{q_\perp}}{(2\pi)^2} \vec{q_\perp} \frac{F(\vec{q})}{|\vec{q}|^2} e^{i\vec{x_\perp}\cdot\vec{q_\perp}} \right|^2
$$

- \triangleright The pattern from the body orientation exhibits an ellipse \checkmark the polar radius and equatorial radius of the prolate spheroid
- \triangleright The differences are concentrated around R_0
	- \checkmark Spherical
	- Deformed-body
	- Deformed-tip
	- \checkmark Point-like

e^+e^- Pair Photoproduction

 \triangleright The cross section of the e^+e^- pair produced by the two-photon process: $\sigma(AA \to AAe^+e^-) = \int d\omega_1 \int d\omega_2 n_1(\omega_1) n_2(\omega_2) \sigma(\gamma \gamma \to e^+e^-)$ The invariant mass M_{ee} and rapidity *y* of the e^+e^- pair:

$$
M_{ee} = \sqrt{E^2 - p^2} = \sqrt{4\omega_1\omega_2}
$$

$$
y = \frac{1}{2}\ln\frac{E + p_z}{E - p_z} = \frac{1}{2}\ln\frac{\omega_1}{\omega_2}
$$

Centrality definition to compare with experimental data:

 \checkmark the two-component approach $f N_{coll}$ + (1 - *f*) N_{part} $c =$

$$
\int_{N_{part}}^{\infty} {\rm d}N'_{part} P(N'_{part})
$$

 \checkmark set $f = 0$ for simplicity

 \checkmark the cumulative distribution function of N_{part}

$$
P(N_{part}) = \frac{\sum_{i=1}^{N} P_i(N_{part})}{N}
$$

Impact of Initial Nuclear Deformation

Isobaric Collisions

 \triangleright 4% higher compared to the spherical case in Ru + Ru collisions, slightly smaller in Zr + Zr collisions

The yields increase in more central collisions, the ratios do not seem to exhibit dependence on centrality

Centrality Dependence

 \triangleright The impact of initial nuclear deformation on photoproduction does not have centrality dependence. \triangleright The impact of initial nuclear deformation on the ratios of e^+e^- pair photoproduction between Ru + Ru and $Zr + Zr$ collisions is negligible.

 \triangle Conduct calculations of e^+e^- pair photoproduction in hadronic heavy-ion collisions considering both spherical and deformed configurations

 \triangleright In hadronic U + U collisions:

- \checkmark describe the experimental data well
- \checkmark significant differences in tip-tip and body-body collisions
- \checkmark approximately 3% differences between spherical and deformed configurations

The impact of initial nuclear deformation on the ratios of e^+e^- pair photoproduction between $Ru + Ru$ and $Zr + Zr$ collisions is negligible (< 1%).

Thank You !