

The effect of initial nuclear deformation on dielectron photoproduction in hadronic heavy-ion collisions

Jiaxuan Luo (罗加宣)

Phys. Rev. C 108, 054906 (2023)

State Key Laboratory of Particle Detection and Electronics, Department of Modern Physics, University of Science and Technology of China (ljx16@mail.ustc.edu.cn)

Motivation and Introduction

≻ Initial nuclear deformation

> Dielectron photoproduction in deformed heavy-ion collisions

➤ Summary

Photon-induced Process

Ultra-relativistic charged nuclei produce highly Lorentz contracted EM field
Weizsacker-Williams equivalent photon approximation (EPA):

 \checkmark Transverse EM fields are equivalent to a flux of quasi-real photons

- ✓ Large quasi-real photon flux $\propto Z^2$
- ✓ $p_{T,max} \sim \frac{\hbar c}{R}$, 30 MeV @ RHIC & LHC

Photoproduction process:

✓ Photon-nucleus interactions: Vector meson

✓ Photon-photon interactions ($\propto Z^4$): dileptons

Dilepton Production in Peripheral Collisions

Conventionally believed to be only exist in ultra-peripheral collisions ($b > 2R_A$, UPCs) to satisfy the coherence condition

> Significant enhancements of e^+e^- production at very low p_T in peripheral collisions ($b < 2R_A$)

Photon-photon interactions can explain the observed enhancements in spherical Au + Au collisions
In hadronic U + U collisions: nuclear charge number vs. initial nuclear deformation

Photoproduction in Isobaric Collisions

 $^{96}_{44}$ Ru + $^{96}_{44}$ Ru and $^{96}_{40}$ Zr + $^{96}_{40}$ Zr: the dependence of the observed excesses on nuclear charge number Z

Initial Nuclear Deformation

> Nuclear charge density:

$$\rho_{sph}(r) = \frac{\rho_0}{1 + e^{(r - R_0)/a}}$$

≻ The shape: ellipsoid

✓ rotational ellipsoid $\rho(\vec{r}) = \rho(r, \theta)$ ✓ a prolate spheroid when $\beta_2 > 0$

> The charge density of a deformed nucleus:

 $\rho_{\vec{v}}(\vec{r}) = \rho[R_z^{-1}(-\varphi_v)R_y^{-1}(\theta_v)R_z^{-1}(\varphi_v)\vec{r}]$

✓ the direction of the major axis: $\vec{v} = (\sin\theta_v \cos\varphi_v, \sin\theta_v \sin\varphi_v, \cos\theta_v)$ ✓ \vec{v} is isotropic in the surface of the unit sphere

Deformed heavy-ion collisions: two limiting cases

✓ Body-body: $\overrightarrow{v_1} = \overrightarrow{v_2} = (\pm 1, 0, 0)$ ✓ Tip-Tip: $\overrightarrow{v_1} = \overrightarrow{v_2} = (0, 0, \pm 1)$

$$\rho(\vec{r}) = \frac{\rho_0}{1 + \exp\left[\frac{r - R_0[1 + \beta_2 Y_2^0(\theta) + \beta_4 Y_4^0(\theta)]}{a}\right]}{\frac{Nucleus}{92}} \left[\frac{R_0(\text{fm}) \quad a(\text{fm}) \quad \beta_2 \quad \beta_4}{0.605 \quad 0.2863 \quad 0.093}\right]$$

Equivalent Photon Flux

The photon flux with energy $\omega = 1$ GeV in U + U collisions at $\sqrt{s_{NN}} = 193$ GeV

$$n(\omega, \vec{x_{\perp}}) = \frac{4Z^2 \alpha}{\omega} \left| \int \frac{\mathrm{d}^2 \vec{q_{\perp}}}{(2\pi)^2} \vec{q_{\perp}} \frac{F(\vec{q})}{\left|\vec{q}\right|^2} e^{i\vec{x_{\perp}} \cdot \vec{q_{\perp}}} \right|^2$$

- The pattern from the body orientation exhibits an ellipse
 the polar radius and equatorial radius of the prolate spheroid
- The differences are concentrated around R_0
 - ✓ Spherical
 - ✓ Deformed-body
 - ✓ Deformed-tip
 - ✓ Point-like

e^+e^- Pair Photoproduction

➤ The cross section of the e⁺e⁻ pair produced by the two-photon process: $\sigma(AA \to AAe^+e^-) = \int d\omega_1 \int d\omega_2 n_1(\omega_1) n_2(\omega_2) \sigma(\gamma\gamma \to e^+e^-)$ > The invariant mass M_{ee} and rapidity y of the e⁺e⁻ pair:

$$M_{ee} = \sqrt{E^2 - p^2} = \sqrt{4\omega_1 \omega_2} \qquad \qquad y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z} = \frac{1}{2} \ln \frac{\omega_1}{\omega_2}$$

Centrality definition to compare with experimental data:

- $\checkmark \text{ the two-component approach } fN_{coll} + (1 f) N_{part} \quad c = \int_{N_{part}}^{\infty} dN'_{part} P(N'_{part})$
- ✓ set f = 0 for simplicity
- ✓ the cumulative distribution function of N_{part}

$$P(N_{part}) = \frac{\sum_{i=1}^{N} P_i(N_{part})}{N}$$

Impact of Initial Nuclear Deformation

Isobaric Collisions

 \blacktriangleright 4% higher compared to the spherical case in Ru + Ru collisions, slightly smaller in Zr + Zr collisions

> The yields increase in more central collisions, the ratios do not seem to exhibit dependence on centrality

Centrality Dependence

The impact of initial nuclear deformation on photoproduction does not have centrality dependence.
The impact of initial nuclear deformation on the ratios of e⁺e⁻ pair photoproduction between Ru + Ru and Zr + Zr collisions is negligible.

Conduct calculations of e^+e^- pair photoproduction in hadronic heavy-ion collisions considering both spherical and deformed configurations

> In hadronic U + U collisions:

- \checkmark describe the experimental data well
- \checkmark significant differences in tip-tip and body-body collisions
- ✓ approximately 3% differences between spherical and deformed configurations

The impact of initial nuclear deformation on the ratios of e^+e^- pair photoproduction between Ru + Ru and Zr + Zr collisions is negligible (< 1%).

Thank You !