

Machine Learning for QCD Matter: from Inverse Problems to Generative Models

Lingxiao Wang(王凌霄) (RIKEN)

May 18, 2024 The 1st edition of Spicy Gluons Workshop for Young Scientists

Prog.Part.Nucl.Phys. 104084(2023); Phys. Rev. D 103, 116023, Phys. Rev. C 106, L051901, Phys. Rev. D 107, 083028, Phys. Rev. D 106, L051502; Chin. Phys. Lett. 39, 120502, Phys. Rev. D 107, 056001, JHEP05(2024)060.

理化学研究所 数理創造プログラム RIKEN Interdisciplinary Theoretical and Mathematical Sciences Program

Advertisement

CONCEPT

"DEEP learning for INverse problems (DEEP-IN)" in Sciences Working Group

The essence of discovery in sciences has always been rooted in the reverse engineering of natural phenomena and observational data. This paradigm of deducing the underlying laws of nature from observable outcomes forms the cornerstone of our scientific inquiry. **The DEEP-IN** working group is established with the recognition that the elucidation of such complex phenomena demands a fusion of physics insights and advanced deep learning methodologies.

In response to the evolving landscape of scientific research, our objective is to integrate cutting-edge **deep learning techniques, alongside** generative models and other advanced statistical learning methods, into the toolkit of scientists.

The DEEP-IN working group at <u>RIKEN-iTHEMS</u> is dedicated to creating an interdisciplinary platform that harnesses the transformative potential of artificial intelligence(AI). This platform is designed to tackle inverse problems that span a diverse spectrum of sciences, from biology to physics and more in the future.

https://sites.google.com/view/deep-in-wg/homepage

L. Wang

<u>About iTHEMS</u> / <u>Working Groups</u> / DEEP-IN Working Group

DEEP-IN Working Group

"DEEP learning for INverse problems (DEEP-IN) in Sciences" working group (April 1st, 2024 -)

DEEP-IN Working Group Website

Objectives

The essence of discovery in sciences has always been rooted in the reverse engineering of natural phenomena and observational data. This paradigm of deducing the underlying laws of nature from observable outcomes forms the cornerstone of our scientific inquiry. The DEEP-IN working group is established with the recognition that the elucidation of such complex phenomena demands a fusion of physics insights and advanced deep learning methodologies. Historically, the exploration of sceinces has relied heavily on intuition and empirical exploration, with methods like inference playing a significant role in our understanding.

Facilitators:

Lingxiao Wang (RIKEN iTHEMS) *Contact at lingxiao.wang@riken.jp Catherine Beauchemin (RIKEN iTHEMS) Akinori Tanaka (RIKEN AIP/RIKEN iTHEMS) Enrico Rinaldi (Quantinuum K.K./RIKEN iTHEMS) Akira Harada (NITIC/RIKEN iTHEMS)

- Machie Learning for QCD Matter
- Inverse Problems
 - Data-Driven Learning
 - Physics-Driven Learning
- Generative Models
 - **Probabilistic Models** lacksquare
 - **Diffusion Models**
- Outlooks

Outline

Generated by ChatGPT-4 + DALL·E

Why Machine Learning?

Vacuum

Baryon Chemical Potential

- •Lattice QCD : Computationally consuming! Physics extraction!

L. Wang

•Heavy-lon Collisions : Large number of data! Complicated simulations! •Neutron Star : Accumulating observations! Poor signal-noise ratio!

What is ML?

Geoffrey Hinton

Machine Learning (ML) is a subset of artificial intelligence that involves the creation of algorithms that allow computers to learn from and make decisions or predictions based on data. It's essentially a way for computers to "learn" from data without being explicitly programmed to do so.

- ChatGPT-4

L. Wang

Big Data + Deep Models GPU

Successful Deep Learning!

Machine Learning and Physics

Phys.Rev. Lett. 124, 010508 (2020)

Machine, $\{\theta\}$

L. Wang

An inverse problem in science is the process of inferring from a set of observations the causal factors that produced them.

Prediction

Estimation

Inverse Problems

L. Wang

Spicy Gluons 2024

7

Phys. Rev. C 106, L051901; Phys. Rev. D 103, 116023

Machine Learning and Inference

L. Wang

$f_{\theta}: X \to Y$

L. Wang

Physics

Model Parameters/ Properties/States

Inverse Mapping, f_{θ}

$f_{\Delta} \stackrel{\cdot}{\cdot} X \xrightarrow{} Y$

Universal Approximation Theorem (1989, 1991)

A feed-forward network with a single hidden layer containing a *finite number of neurons* can approximate arbitrary continuous functions.

AutoEncoder

Convolutional Neural Network

Graph Neural Network

L. Wang

1 hidden layer with 20 neurons

Input 5X5

L. Wang

Hydro data

CNNs+DNNs

Input 15X48

L. Wang

Phys. Rev. D 103, 116023

with Lijia and Kai

Learning phase transition orders, CME signals from final-stage distributions

L. Wang

Phys. Rev. C 106, L051901(Letter)

with Yuan-Sheng, Xu-Guang and Kai

Raffaele Del Grande | XQCD 2023

L. Wang

in Preparation

with Jiaxing Zhao, Liang Zhang

Whether this inverse mapping exists?

 $V(r) = b_1 e^{-b_2 r^2} + b_3 (1 - e^{-b_4 r^2}) (\frac{e^{(-m_\pi r)}}{m_\pi})^{n_\pi}$

L. Wang

in Preparation

with Jiaxing Zhao, Liang Zhang

60 k-points, 10000 correlations

L. Wang

$\hat{\theta} = \arg \max_{\theta} \{ p(X \mid \theta) \}$

Physics

Model Parameters/ Properties/States

L. Wang

L. Wang

L. Wang

Building Nuclear Matter EoS а b 3.0 — ALF1-4 ALF1 - AP1-4 ALF2 100 — AP1-2 - WFF1-3 — AP3 idephotono 2.5 — SQM1-3 — AP4 — GS1-2 — BSK19 BBB2 BSK20 BSK21 — BGN1H1 2.0 - ENG ressure (MeV fm⁻³) — BSK19-21 — GNH3 Mass (M $_{\odot}$) BPAL12 —— GS1 10 8 Astro+Exp — H4 — MPA1 1.5 — MS1 — ENG — MS1b — FPS — NJL — QMC - GNH 1.0 0.19 — SLY — H1-7 ----- SQM1-3 — MPA1 ---- PAL6 — MS1-2 — WWF1 WWF2 — NJL 0.5 WWF3 — PAL6 — QMC Astro+Exp — SLy 0.0 ______ 5 6 7 8 9 12 14 16 10 18 3 4 5 6 7 8 9 8 2 0.1 Radius (km) Density (fm⁻³) F. Özel and P. Freire, Annu. Rev. Astron. Astrophys. 54, 401 (2016)

L. Wang

Physics Parameters are Finite EoS, Wave-Function, Potential,

Inference is Easy-To-Compute ODEs, PDEs, Simulations, ...

$\hat{\theta} = \arg \max_{\theta} \{ p(X \mid \theta) \}$

Deep Neural Network represented Physics, f_{θ}

Flexible Representation

Back-Propagation

Easy-To-Compute on GPUs

1. Building Neutron Star EoS

Tolman–Oppenheimer–Volkoff equations

$$\begin{cases} \frac{dP}{dr} = -G\frac{m(r)\varepsilon(r)}{r^2}\left(1 + \frac{P(r)}{\varepsilon(r)}\right)\left(1 + \frac{4\pi r^3 P(r)}{m(r)}\right)\left(1 - \frac{2G}{r^2}\right) \\ \frac{dm(r)}{dr} = 4\pi r^2 \varepsilon(r) \end{cases}$$

EoS
$$P(\varepsilon) = 0$$

Core $r = 0, \varepsilon(r = 0) = \frac{\varepsilon_c}{r}, P(r = 0) = P(\frac{\varepsilon_c}{r})$ Surface $r = R, \varepsilon(r = R) \simeq 0, M = \int 4\pi r^2 \varepsilon(r) dr$ M, R

L. Wang

-lydrostatic condition in each shell (dr)

Nat. Rev. Phys. 4, 237–246 (2022)

L. Lindblom, A.J., 398, 569 (1992). If the whole M(R) is known, it's well-defined problem.

1. Building Neutron Star EoS

L. Wang

Tolman–Oppenheimer–Volkoff equations

1. Building Neutron Star EoS

L. Wang

Phys. Rev. D 107, 083028; JCAP08 (2022) 071

1. Building Neutron Star EoS

Blue dots: NN results, Fujimoto-Fukushima-Murase Yellow and Green dashed lines: Bayesian Approaches

Phys. Rev. D 107, 083028

18 (M_i, R_i) , sample size = 10k
causality ($d\epsilon/dp < 1$)
Maximum mass $\geq 1.9 M_{\odot}$

Maximum mass	$\geq 1.9 M_{\odot}$	1 10 Radius (km)	
Observable	$Mass(M_{\odot})$	Radius(km)	
M13	$1.42 {\pm} 0.49$	11.71±2.48	
M28	$1.08 {\pm} 0.30$	8.89±1.16	
M30	$1.44 {\pm} 0.48$	$12.04{\pm}2.30$	
NGC 6304	1.41 ± 0.54	11.75±3.47	
NGC 6397	$1.25 {\pm} 0.39$	11.48 ± 1.73	
ωCen	1.23 ± 0.38	9.80±1.76	
4U 1608-52	$1.60 {\pm} 0.31$	10.36±1.98	
4U 1724-207	$1.79 {\pm} 0.26$	11.47±1.53	
4U 1820-30	$1.76 {\pm} 0.26$	11.31±1.75	
EXO 1745-248	$1.59 {\pm} 0.24$	10.40 ± 1.56	
KS 1731-260	$1.59 {\pm} 0.37$	10.44 ± 2.17	
SAX J1748.9-2021	$1.70 {\pm} 0.30$	11.25 ± 1.78	
X5	$1.18 {\pm} 0.37$	10.05 ± 1.16	
X7	$1.37 {\pm} 0.37$	10.87±1.24	
4U 1702-429	$1.90 {\pm} 0.30$	12.40 ± 0.40	
PSR J0437–4715	$1.44 {\pm} 0.07$	13.60 ± 0.85	
PSR J0030+0451	1.44 ± 0.15	13.02 ± 1.15	
PSR J0740+6620	$2.08 {\pm} 0.07$	13.70 ± 2.05	

2. Reconstructing Spectral Function

Correlation Function

Spectrum representation

 $G(\tau, T) = \int_{0}^{\infty} \frac{K(\omega, \tau, T)\rho(\omega, T)d\omega}{\omega}$ $K(\omega, \tau, T) = \frac{\cosh \omega (\tau - \frac{1}{2T})}{\sinh \frac{\omega}{2T}}$ **Thermal Kernel**

Spectral Function

2. Reconstructing Spectral Function

L. Wang

Kallen – Lehmann(KL) representation

2. Reconstructing Spectral Function

L. Wang

Phys. Rev. D 106, L051502

2. Reconstructing Spectral Function

NN : $(\rho_1, \rho_2, \dots, \rho_{N_{\omega}})$

Differentiable variables : Network weights $\{\theta\}$ Adam, L2 ($\lambda = 10^{-3} \rightarrow 10^{-8}$), Smoothness ($\lambda_s = 10^{-4} \rightarrow 0$) width = 64 and depth = 3 with bias

L. Wang

NN-P2P : $\rho(\omega)$

Differentiable variables : Network weights $\{\theta\}$

Adam, L2 ($\lambda = 10^{-6}
ightarrow 0$)

width = 64 and depth = 3 with bias

Phys. Rev. D 106, L051502

Regularization

L2 : $\lambda | \theta |_{2}^{2}$

Smoothness:
$$\lambda_s \sum_{i}^{N_{\omega}} (\rho_i - \rho_{i-1})^2$$

Gradient-based Optimization

Adam:
$$\theta_{t+1} = \theta_t - \frac{\eta}{\sqrt{\hat{v}_t} + \epsilon} \hat{m}_t$$

Physical Prior

Positive-defined condition(for hadrons): Softplus $log(1 + e^x)$

2. Reconstructing Spectral Function

L. Wang

Phys. Rev. D 106, L051502

32

2. Reconstructing Spectral Function

L. Wang

Phys. Rev. D 106, L051502

1. Single-peak functions

2. Non-positive-definited SPs

3. Lattice QCD mock data

Thermal (details see arXiv:2110.13521)

$$G(\tau,T) = \int_0^\infty \frac{d\omega}{2\pi} K(\omega,\tau,T)\rho(\omega,T)$$

$$K(\omega, \tau, T) = \frac{\cosh \omega (\tau - \frac{1}{2T})}{\sinh \frac{\omega}{2T}}$$

Spicy Gluons 2024

noise level $\epsilon = 10^{-4}$ with $N_p = 25$ points

3. Extracting Nuclear Force

Nambu-Bethe-Salpeter (NBS) wave function

$$\psi_{NBS}(\vec{r}) = \langle 0|N(\vec{r})N(\vec{0})|N(\vec{k})N(-\vec{k}),in\rangle$$

$$\simeq e^{i\delta_{l}(k)}\sin(kr - l\pi/2 + \frac{\delta_{l}(k)}{\delta_{l}(k)})/(kr)$$

(at asymptotic region)

L. Wang

N. Ishii, S. Aoki, and T. Hatsuda, Phys. Rev. Lett. 99, 022001 (2007)

Local Approx. **Gradient Expansion**

Nulcear Force

$$(k^2/m_N - H_0) \psi_{NBS}(\vec{r})$$

=
$$\int d\vec{r}' U(\vec{r}, \vec{r}') \psi_{NBS}(\vec{r}')$$

(Schrodinger eq.)

3. Extracting Nuclear Force

L. Wang

in preparation (with HAL QCD)

3. Extracting Nuclear Force

Separable Potential

 $U(\mathbf{r},\mathbf{r}') \equiv \omega \nu(\mathbf{r})\nu(\mathbf{r}'), \quad \nu(\mathbf{r}) \equiv e^{-\mu r}$

$$\phi_k^0(r) = \frac{e^{i\delta_0(k)}}{kr} \left[\sin\{kr + \delta_0(k)\} - \sin\delta_0(k)e^{-\mu r} \left(1 + \frac{r(\mu^2 + k^2)}{2\mu}\right) \right]$$

$$k \cot \delta_0(k) = -\frac{1}{4\mu^2} \left[2\mu(\mu^2 - k^2) - \frac{3\mu^2 + k^2}{4\mu^3}(\mu^2 + k^2)^2 + \frac{(\mu^2 + k^2)^4}{8\pi m\omega} \right]$$

Nambu-Bethe-Salpeter (NBS) wave function

$$\phi_{\mathbf{k}}(\mathbf{r})e^{-W_{\mathbf{k}}t} \equiv \langle 0 | N(\mathbf{x} + \mathbf{r}, t)N(\mathbf{x}, t) | NN, W_{k} \rangle$$

$$(E_{k} - H_{0})\phi_{\mathbf{k}}(\mathbf{r}) = \int d^{3}r' U(\mathbf{r}, \mathbf{r}')\phi_{\mathbf{k}}(\mathbf{r}')$$

$$\mathscr{L} = \sum_{k} \int d^{3}r \left[(E_{k} - E_{k}) - \frac{k^{2}}{2m}, \quad m = \frac{m_{N}}{2} \right]$$

L. Wang

in preparation (with HAL QCD)

Neural Network Hadron Force

3. Extracting Nuclear Force

 $\Omega_{ccc}\Omega_{ccc}$ Interaction

$$\left\{\frac{1}{4m_N}\frac{\partial^2}{\partial t^2} - \frac{\partial}{\partial t} - H_0\right\}R(t,r) = \int 4\pi r'^2 dr' U(r,r')R(t,r)$$

Nambu-Bethe-Salpeter (NBS) wave function

$$R2 = R_{t+1} - 2R_t + R_{t-1}, R1 = (R_{t+1} - R_{t-1})/2, Rr = \nabla^2 R(t, r)$$
$$m_N = 2.073, a^{-1} = 2333.0 \text{MeV}$$
$$t = 26$$

Phys. Rev. Lett. 127, 072003 (2021)

$$\mathscr{L} = \sum_{t} \left\{ \frac{1}{4m_N} R2(t, r) - R1(t, r) \right\}$$

L. Wang

in preparation (with HAL QCD)

Neural Network Hadron Force

3. Extracting Nuclear Force

L. Wang

in preparation (with HAL QCD)

Summary

- Inverse Problems
 - Data-driven learning
 - Physics-driven learning
 - Physics-driven deep learning
 - Neural network representations
 - Gradient-based optimization
- Future works
 - Nuclear Matter EoS
 - Spectroscopy [github1, github2]
 - **NN-Nulcear Force**

$\hat{\theta} = \arg \max_{\theta} \{ p(X \mid \theta) \}$

Generative Models as Inverse Modeling

Generative Models

Generative models → Underlying Distributions in Data

L. Wang

High-Dimensional Distribution

 $p(\phi) = e^{-S(\phi)}/Z$ $\langle O \rangle \approx \frac{1}{N} \sum_{i} O_{i}$

 \rightarrow Physical Distribution, Sampling via Generative Models

Global Sampling

Fast and Independent Sampler

Prog.Part.Nucl.Phys. 104084(2023) (Invited Review)

L. Wang

Lattice QCD © Derek Leinweber/CSSM/University of Adelaide

Heavy-Ion Collisions © 2010 CERN

Probabilistic Models

I. Goodfellow, arXiv:1701.00160 (2017)

• x₆

WaveNet

Probabilistic Models

 $\mathbf{x} \sim p_{data}(\mathbf{x})$

L. Wang

Curse of Dimensionality

$$\mathbf{s}_{\theta}(\mathbf{x}) = \nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x})$$
$$= -\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x}) - \underbrace{\nabla_{\mathbf{x}} \log Z_{\theta}}_{=0} = -\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})$$

Spicy Gluons 2024

44

- Forward diffusion process gradually adds noise to input
- Reverse denoising process learns to generate data by denoising
- Train Probabilistic Models to learn how to **convert a simple** distribution to a target distribution

 \mathbf{X}_3

 \mathbf{x}_4

Noise

 \mathbf{x}_2

Data

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020

- Forward Diffusion SDE
 - **Drift term**: pulls towards mode
 - **Diffusion term**: injects noise
- Reverse Generative Diffusion SDE
 - Drift term is adjusted with a "Score Function"
 - Represent the score function with **neural networks**

L. Wang

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

dφ $\dot{\phi}(\phi,\xi) + g(\xi)\eta(\xi)$ $d\xi$

$$\frac{d\phi}{dt} = \left[f(\phi, t) - g^2(t) \nabla_{\phi} \log p_t(\phi) \right] + g(t)\bar{\eta}(t)$$

Spicy Gluons 2024

Anderson, in Stochastic Processes and their Applications, 1982

Stochastic Quantization

$$\frac{\partial \phi(x,\tau)}{\partial \tau} = -\frac{\delta S_E[\phi]}{\delta \phi(x,\tau)} + \eta(x,\tau)$$

 $\langle \eta(x,\tau) \rangle = 0, \quad \langle \eta(x,\tau)\eta(x',\tau') \rangle = 2\alpha\delta(x-x')\delta(\tau-\tau')$ τ : fictitious time, α : diffusion constant

Fokker-Planck equation

$$\frac{\partial P[\phi,\tau]}{\partial \tau} = \alpha \int d^n x \left\{ \frac{\delta}{\delta \phi} \left(\frac{\delta}{\delta \phi} + \frac{\delta S_E}{\delta \phi} \right) \right\} P[\phi,\tau]$$

Equilibrium solution (long-time limit),

$$P_{\text{eq}}[\phi] \propto e^{-\frac{1}{\alpha}S_E[\phi]}$$

• Set the diffusion constant as $\alpha = \hbar$

$$P_{eq}[\phi] \sim e^{-\frac{1}{\hbar}S_E[\phi]} = P_{quantum}[\phi]$$

L. Wang

Parisi G. and Wu Y. S., Sci. China, A 24, ASITP-80-004 (1980).

Thermal equilibrium limit \rightarrow Quantum distribution

1. No need gauge-fixing! 2. Can handle fermionic fields naturally \rightarrow (Complex Langevin method)

P. H. Damgaard and H. Hüffel, Stochastic Quantization, Phys. Rept. 152, 227 (1987). M. Namiki, Basic Ideas of Stochastic Quantization, PTPS 111, 1 (1993). G. Aarts, L. Bongiovanni, E. Seiler, D. Sexty, and I.-O. Stamatescu, Eur. Phys. J. A 49, 89 (2013).

....

DMs as SQ

Diffusion models(Reverse SDE): $\frac{d\phi}{dt} = -g(t)^2 \nabla_{\phi} \log p_t(\phi) + g(t)\bar{\eta}$ • Define: $\tau \equiv T - t(d\tau \equiv -dt)$ $\frac{d\phi}{d\tau} = g_{\tau}^2 \nabla_{\phi} \log q_{\tau}(\phi) + g_{\tau} \bar{\eta}$ $\phi(\tau_{n+1}) = \phi(\tau_n) + g_\tau^2 \nabla_\phi \log q_{\tau_n} [\phi(\tau_n)] \Delta \tau + g_\tau \sqrt{\Delta \tau} \bar{\eta}(\tau_n)$ introducing Noise scale: $\langle \bar{\eta}^2 \rangle \equiv 2\bar{\alpha}$, time scale: $g_{\tau}^2 \Delta \tau$ • FP equation $\frac{\partial p_{\tau}(\phi)}{\partial \tau} = \int d^{n}x \left\{ g_{\tau}^{2} \bar{\alpha} \frac{\delta}{\delta \phi} \left(\frac{\delta}{\delta \phi} + \frac{1}{\bar{\alpha}} \nabla_{\phi} S_{\text{DM}} \right) \right\} p_{\tau}(\phi)$

 $\nabla_{\phi} S_{\mathsf{DM}} \equiv -\nabla_{\phi} \log q_{\tau}(\phi)$

L. Wang

JHEP 05(2024)060

 $p_{eq}(\phi) \propto e^{-\frac{S_{DM}}{\bar{\alpha}}}$

 $p_{\tau=T}(\phi) \to P[\phi, T]$

 $O(\bar{\alpha}) \sim O(\hbar)$

The reverse mode of **a well-trained diffusion model** at $\tau \rightarrow T$ serves as the stochastic quantization for the input

DM for Scalar Field

L. Wang

JHEP 05(2024)060

Spicy Gluons 2024

50

Summary I

- **Generative Models** ullet
 - Probabilistic Models
 - Score Matching
 - **Diffusion Models** \bullet
 - Stochastic Quantization scheme
- **Future works** lacksquare
 - Diffusion models as SQ
 - 2+1D Gauge Field
 - Complex Langevin Method(CLM) for **Fermions**

Thank You !

ML meets Physics, Opportunities and Challenges

20 =

Representation Learning

$g_{\theta}: X \to Y$ $f_{\theta}: Y \to X$

Physics

Model Parameters/ Properties/States

L. Wang

Inverse Mapping, g_{θ}

Representation Learning

L. Wang

Representation Learning

L. Wang

H. Huang, B. Xiao, Z. Liu, Z. Wu, Y. Mu, and **H. Song**, Phys. Rev. Res. **3**, 023256 (2021)

Backups

1. Building Neutron Star EoS

Uncertainty estimations

- •*x* : reconstructed EoSs given a sample
- •O(x) : observables, M, R, P

Variance
$$\sigma(O)^2 = \langle \hat{O}^2 \rangle - \bar{O}^2$$

Mean $\bar{O} = \langle \hat{O} \rangle = \sum_{j}^{N} w^{(j)} O^{(j)}$

L. Wang

Phys. Rev. D 107, 083028

deterministic

Backups

1. Building Neutron Star EoS

L. Wang

Phys. Rev. D 107, 083028

Backups

2. Reconstructing Spectral Function

- In practice, the Euclidean correlations \bullet have finite number of points and with finite precision;
- The ill-posedness of the spectral ● reconstruction **fundamentally exists** even for continuous correlation functions(infinite observations);
- It's caused by the numerical inaccuracy • of the correlation measurements (induced high degeneracy in solution space).

<u>Comput. Phys. Commun. 282, 108547</u>

J. Phys. A: Math. Gen., Vol. 11, No. 9, 1978. Printed in Great Britain.

 $\mathbf{x} \sim p_{data}(\mathbf{x}) \equiv p(\mathbf{x})$

$$\max_{\theta} \prod_{i=1}^{N} p_{\theta}(\mathbf{x}_i)$$

Maximum Likelihood Estimation

 $\nabla_{\mathbf{x}} \log p(\mathbf{x})$

 $\mathbf{s}_{\theta}(\mathbf{x}) \approx \nabla_{\mathbf{x}} \log p(\mathbf{x})$

Approaching Score Function

$$\mathbf{s}_{\theta}(\mathbf{x}) = \nabla_{\mathbf{x}} \log p_{\theta}(\mathbf{x}) = -\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x}) - \underbrace{\nabla_{\mathbf{x}} \log Z_{\theta}}_{=0} = -$$

L. Wang

Parameterizing probability density functions

 $-\nabla_{\mathbf{x}} f_{\theta}(\mathbf{x})$

Parameterizing score functions

@Yang Song's Blog

Score-matching a noise-perturbed distribution

$$\mathbb{E}_{p_{\sigma}(\mathbf{x})}[\|\nabla_{\mathbf{x}}\log p_{\sigma}(\mathbf{x}) - \mathbf{s}_{\theta}(\mathbf{x})\|_{2}^{2}]$$

L. Wang

Matching a noise-perturbed distribution

Estimated scores are only accurate in high density regions

No enough data in low-density region! But we sample from the low-density region using Langevin dynamics...

Spicy Gluons 2024

60

Matching a noise-perturbed distribution

Matching multi-noise perturbed distributions

Multiple scales of Gaussian noise to perturb the data distribution (first row), and jointly estimate the score functions for all of them (second row).

L. Wang

Small noise \rightarrow Good approximation to data, poor in low-density region! Large noise \rightarrow Poor approximation to data, good in low-density region!

Multiple noise perturbations!

• Choose the noise scheme as a geometric progression,

 $\sigma_1/\sigma_2 = \sigma_{i-1}/\sigma_i = \ldots = \sigma_{L-1}/\sigma_L > 1$, with σ_1 being sufficiently small and σ_L comparable to the maximum pairwise distance between all training data **points.** *L* is typically on the order of hundreds or thousands.

• Parameterize the score-based model, $s_{\theta}(\mathbf{x}, i)$, with U-Net skip connections.

Ho et al., Denoising Diffusion Probabilistic Models, NeurIPS 2020

Song et al., Score-Based Generative Modeling through Stochastic Differential Equations, ICLR 2021

62

$$\sum_{i=1}^{L} \lambda_i \mathbb{E}_{p_{\sigma_i}(\mathbf{x})} [\|\nabla_{\mathbf{x}} \log p_{\sigma_i}(\mathbf{x}) - \mathbf{s}_{\theta}(\mathbf{x}, i)\|_2^2] \qquad \mathsf{Matcl}$$

Choose the noise scheme as, $\sigma_i \equiv \sigma^{\tau}$, where τ indicates "time-step" for adding noise.

H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications

L. Wang

hing multi-noise perturbed distributions

$$\nabla_{\mathbf{x}} \log p_{\sigma_i}(\mathbf{x}) = \nabla_{\mathbf{x}} \log(p_{\sigma_i}(\mathbf{x}_{\tau} | \mathbf{x}) p(\mathbf{x})) = \nabla_{\mathbf{x}} \log p_{\sigma_i}(\mathbf{x}_{\tau} | \mathbf{x})$$

$$p_{\sigma_i}(\mathbf{x}_{\tau} \mid \mathbf{x}) = \mathcal{N}\left(\mathbf{x}_{\tau}; \mathbf{x}, \frac{1}{2\log\sigma}(\sigma^{2\tau} - 1)\mathbf{I}\right)$$

Training is Matching

<u>JHEP 05(2024)060</u>

L. Wang

$$S(\phi) = \frac{\mu^2}{2}\phi^2 + \frac{g}{4!}\phi^4$$
$$f(\phi) = -\mu^2\phi - \frac{g}{3!}\phi$$

- 0.8

- 0.6

0.4

- 0.2

63

<u>JHEP 05(2024)060</u>

L. Wang

$$S(\phi) = \frac{\mu^2}{2}\phi^2 + \frac{g}{4!}\phi^4$$
$$f(\phi) = -\mu^2\phi - \frac{g}{3!}\phi$$

64

