The 1st edition of Spicy Gluons Workshop for Young Scientists: The quark-gluon matter in extreme conditions

Light Nuclei Production and Yield Ratio (N_t×N_p/N_d²) in Au+Au Collisions at RHIC

Dingwei Zhang South China Normal University

Spicy Gluons 2024, USTC, May 16-19

Outline

>Introduction

Analysis Details

- Triton Production
- Proton Feed-down Corrections

➢ Results

- Particle Yields
- Coalescence Parameters
- Light Nuclei Yield Ratios

Summary and Outlook

Introduction

QCD Phase Diagram

1) High temperature:

QGP properties

2) High baryon density:

First-order phase boundary and critical point

Au+Au Collisions at RHIC STAR ^[1]

 $\sqrt{s_{NN}}$: 3 - 200 GeV μ_B : 750 - 25 MeV

[1] http://drupal.star.bnl.gov/STAR/starnotes/public/sn0598

Introduction

Mechanisms of Light Nuclei in HIC

- Our understanding of the production mechanisms of light nuclei in relativistic heavy-ion collisions are currently incomplete
 - Thermal emission $N_i = \frac{g_i V}{\pi^2} m_i^2 T K_2(m/T) e^{(\mu_i/T)}$
 - Nucleon coalescence $N_A = g_c \int d\Gamma \rho_s(\{x_i, p_i\}) \times W_A(\{x_i, p_i\})$
 - Hadronic re-scattering $\pi NN \leftrightarrow \pi d, NNN \leftrightarrow Nd, NN \leftrightarrow \pi d \dots$

L. P. Csernai and J. I. Kapusta, Phys. Rept. 131, 223 (1986); R. Scheibl and U. W. Heinz, Phys. Rev. C 59, 1585 (1999); Y. Oh, Z.-W. Lin, and C. M. Ko, Phys. Rev. C 80, 064902 (2009); A. Andronic, P. Braun-Munzinger, K. Redlich, and J. Stachel, Nature 561, 321 (2018); J. Chen, D. Keane, Y.-G. Ma, A. Tang, and Z. Xu, Phys Rept. 760, 1 (2018); D. Oliinychenko, L.-G. Pang, H. Elfner, and V. Koch, Phys. Rev. C 99, 044907 (2019); K.-J. Sun, R. Wang, C. M. Ko, Y.-G. Ma, and C. Shen, (2022), Nature Commun. 15 no.1, 1074 (2024) Dingwei Zhang Spice Gluons 2024 @ USTC 3

٠

Introduction

LN - Neutron Density Fluctuations

Coalescence picture:

$$N_{d} = \frac{3}{2^{1/2}} \left(\frac{2\pi}{m_{0}T_{eff}}\right)^{3/2} N_{p} \langle n \rangle \left(1 + C_{np}\right)$$
$$N_{t} = \frac{3^{\frac{3}{2}}}{4} \left(\frac{2\pi}{m_{0}T_{eff}}\right)^{3} N_{p} \langle n \rangle^{2} (1 + \Delta n + 2C_{np})$$

$$N_t \times N_p / N_d^2 = g(1 + \Delta n)$$

K.-J. Sun, L.W. Chen, C. M. Ko, J. Pu, and Z. Xu, Phys. Lett. B 781, 499 (2018) Che Ming Ko, Nuclear Science and Techniques (2023) 34:80

- In the vicinity of the critical point or the first order phase transition, density fluctuations become larger
- ➢ In the nucleon coalescence picture, nuclear compound yield ratio is sensitive to the baryon density fluctuations and can be used to probe 1st order phase transition and/or critical point in heavy-ion collisions

Spice Gluons 2024 @ USTC

Analysis Details

The Solenoidal Tracker At RHIC (STAR)

Time Projection Chamber (TPC) ✓ Charged particle tracking ✓ Momentum reconstruction

- \checkmark Particle identification from
 - ionization energy loss (dE/dx)
- ✓ Pseudorapidity coverage $|\eta| < 1.0$

Time-of-Flight (TOF)

- ✓ Particle identification from m^2
- ✓ Pseudorapidity coverage $|\eta| < 0.9$

Analysis Details

Datasets

Event Selection:

Energy(GeV)	Year	Vr(cm)	Vz(cm)	Event(M)
7.7	2010	2	40	2.37
11.5	2010	2	40	8.52
14.5	2014	1	40	16.69
19.6	2011	2	40	19.64
27	2011	2	40	38.42
39	2010	2	40	116.78
54.4 ^[1]	2018	2	40	566.15
62.4	2010	2	40	61.69
200	2011	2	30	465.07

^[1] Hui Liu (For the STAR Collaboration), QM2019, Poster ID: 389

Dingwei Zhang

Spice Gluons 2024 @ USTC

Track Selection:

nHits	nHits/nHitspos	s ndEdxHits	DCA	$ \eta $	$ \mathbf{y} $	p_T
> 20	> 0.52	> 10	$< 1 \mathrm{~cm}$	< 1	< 0.5	> 0.2 GeV
Standard 100 500 400 200 100 	$hHits = 2.214631e+10$ Mean 1.406 Std Dev 34.18 $\int \int \frac{1}{\sqrt{1-20}} \int \frac{1}{1$	$ \begin{array}{c} \times 10^{6} \\ 1000 \\ 600 $		$ \begin{array}{c} \times 10^{6} \\ 900 \\ 800 \\ 700 \\ 600 \\ 500 \\ 400 \\ 200 \\ 100 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$	1 1.5 2	hDca Entries 2.214631e+10 Mean 0.4923 Std Dev 0.506 +Au 39 GeV

Analysis Details

Particle Identification & Signal Extraction

Triton p_T Spectra

Dingwei Zhang

Spice Gluons 2024 @ USTC

Deuteron p_T Spectra

★Dashed lines: Blast-wave function fits

Proton Feed-down Corrections

 \square

*Data driven method: Use STAR published strange particle yields

★From 7.7 – 200 GeV, proton feed-down fraction increases from 25% to 45%

Dingwei Zhang

STAR: Phys. Rev. Lett. 130, 202301 (2023); Phys. Rev. Lett. 97, 152301 (2006); Phys Rev. C 102, 034909 (2020) Spice Gluons 2024

Primordial proton p_T Spectra

*Mid-rapidity transverse momentum spectra for primordial protons

STAR: Phys. Rev. Lett. 97, 152301 (2006); Phys. Rev. Lett. 130, 202301 (2023)

Coalescence Parameter

STAR: Nucl. Phys. A 1005 (2021) 121825 arXiv:2311.11020

 $\frac{1}{2} dN/dy$ for tritons increases with decreasing collision energy: yields driven by baryon density

 $\star < p_T >$ decreases from central to peripheral collisions and with decreasing collision energy

Mass Dependence of dN/dy & < p_T >

★Mass dependence of light nuclei yields (divided by the spin degeneracy factor) well described by exponential functions

★ Average transverse momentum increase with increasing collisions energy and increasing particle mass: influence of radial flow

Particle Yield Ratios

The triton results follow the trend of the world data, and thermal model overestimates the N_t/N_p ratios

V. Vovchenko, B. Dönigus, B. Kardan, M. Lorenz, and H. Stoecker, Phys. Lett. B , 135746 (2020);

★The effects of hadronic re-scatterings during hadronic expansion may play an important role in light nuclei production

K.-J. Sun, R. Wang, C. M. Ko, Y.-G. Ma, and C. Shen, (2022), Nature Commun. 15 no.1, 1074 (2024)

STAR: Rev. Lett. Phys. 130, 202301 (2023)
W. Reisdorf et al. (FOPI), Nucl. Phys. A 781, 459 (2007);
T. A. Armstrong et al. (E864), Phys. Rev. C 61, 064908 (2000);
S. S. Adler et al. (PHENIX), Phys. Rev. Lett. 94 , 122302 (2005);
S. S. Adler et al. (PHENIX), Phys. Rev. C 69, 034909 (2004);
J. Adam et al. (ALICE), Phys. Rev. C 93, 024917 (2016)

$dN_{ch}/d\eta$ Dependence of LN Yield Ratio

The ratio monotonically decreases with increasing $dN_{ch}/d\eta$ and exhibits a scaling behavior: trend driven by interplay between the size of light nuclei and the size of fireball created in HIC

☆The ratio can be described by the coalescence model,
but thermal model overestimates the data

The ratios at 19.6 and 27 GeV from 0%-10% centrality show enhancements to the coalescence baseline with a combined significance of 4.1 σ

Energy Dependence of Light Nuclei Yield Ratio

★Non-monotonic behavior observed in the energy dependence of the yield ratio from 0%-10% central Au+Au collisions around 19.6 and 27 GeV

*The yield ratio in peripheral (40%-80%) collisions exhibits a monotonic trend and the data can be well described by coalescence models within uncertainties

The significance of the enhancements decreases with decreasing p_T acceptance in the region of interest

Dingwei Zhang

Spice Gluons 2024 @ USTC

★Production mechanism of light nuclei in the heavy-ion collision

★Understanding of the QCD phase diagram

ALICE: Pb+Pb 2.76 TeV: Phy. Rev. C 88, 044910 (2013) Phy. Rev. C 93, 024917 (2016) p+p 7 TeV: Eur. Phys. J. C 75, 226 (2015) Phys. Lett. B 794, 50 (2019) p+Pb 5.02 TeV: Phys. Rev. C 101, 044906 (2020) Phys. Lett. B 800, 135043 (2020) Phys. Lett. B 728, 25 (2014) Pb+Pb 5.02 TeV: JHEP 01, 106 (2022)

THERMAL: Phys. Lett.424 B 785, 171 (2018)

LN Production in FXT Au+Au Collisions

3 GeV : Hui Liu (for STAR), QM2022

 \blacktriangleright Integral dN/dy of protons and light nuclei show significant centrality and rapidity dependence

> The 3 GeV with good rapidity coverage provide the opportunity to calculate 4π yields accurately

LN Production in FXT Au+Au Collisions

3 GeV : Hui Liu (for STAR), QM2022

- FXT 3 GeV shows different trend compared to BES-I Au+Au collisions, indicating a different medium equation of state (EoS) at 3 GeV
- The AMPT model with 1st order P.T. EoS with a critical temperature (~154MeV) shows the same centrality dependence as that observed by STAR experiment

H. Liu. [STAR Collaboration] Acta Phys. Polon. Supp. 16, 1-A148 (2023) STAR: arXiv:2311.11020 Spice Gluons 2024 @ USTC 22

Dingwei Zhang

Summary & Outlook

*We performed systematic measurements of light nuclei production in heavy-ion collisions at the STAR experiment, including deuteron, triton, etc...

The thermal model can describe the N_d/N_p ratio but not N_t/N_p ratio.

*Relative to the coalescence baseline, enhancements of the yield ratio $N_t \times N_p / N_d^2$ are observed in the 0%-10% most central collisions at 19.6 and 27 GeV with a combined significance of 4.1 σ . The enhancements are not observed in peripheral collisions and in model calculations without critical fluctuations.

Outlook:

Thank you for your attention!

Proton Feed-down Corrections

Backup

1.6

25

Source Size Effect in Coal. Production of LN

 \star Due to the source size effect in coalescence picture, yield ratio shows scaling behavior and decreasing with increasing the charged particle multiplicity

*This multiplicity scaling can be used to validate the production mechanism of light nuclei and serve as a baseline to

search for the critical point in heavy-ion collisions

W. Zhao, K.-j. Sun, C. M. Ko, and X. Luo, Phys. Lett. B 820, 136571 (2021); K.-J. Sun, C. M. Ko, and B. Dönigus, Phys. Lett. B 792, 132 (2019)

Backup

Dingwei Zhang

Backup

Comparison of Proton Yields

The primordial proton yield obtained from the UrQMD+GEANT method [Phys. Rev. Lett. 121, 03230 (2018)] is significantly larger than that from the data driven method

Backup