

Investigating the D meson production and elliptic flow in p-Pb collisions at LHC

Chao Zhang Wuhan University of Technology(WUT)

Collaborators: Liang Zheng, Shusu Shi, Zi-Wei Lin Based on 2210.07767 & 2403.06099

Spicy Gluons(胶麻) May 16-19, 2024, Hefei, Anhui, China.

Outline

- The $D^0 R_{pA}$ and v_2 puzzle
- Improvement on the multi-phase transport model
- Possible solution of the R_{pA}/v_2 puzzle with the Cronin effect
- D^0 and D_s^+ meson production at forward rapidities
- Summary

It has been a challenge to describe both data simultaneously:

- sizable $v_2 \rightarrow$ significant charm quark interaction with medium \rightarrow suppression of charm high p_T spectrum in pA and R_{pA} (above)
- Studies based on color glass condensate can describe D and J/ ψ v₂, no R_{pA} results yet. Cheng Zhang et al. PRL (2019), PRD (2020)

The D^0 R_{pA} and v_2 puzzle

• Without charm quark scatterings (below),

- This was seen in an earlier study: ~ no suppression in R_{pA} , then v_2 is too small. Beraudo et al. JHEP (2016)
- A simultaneous description of the R_{pA} and v₂ data could disentangle different effects (*initial state correlations, cold nuclear, hot medium*) and help understand onset of collectivity & formation of parton matter or QGP

Improvement on the multi-phase transport model

We use a multi-phase transport (AMPT) model for this study.

It was constructed as a self-contained kinetic description of heavy ion collisions:

- evolves the system from initial condition to final observables;
- particle productions of all flavors from low to high p_T;
- addresses non-equilibrium evolution/dynamics (*more important for smaller systems*).

improvement on the heavy flavor of AMPT

We take the charm quark from HIJING initial conditions with the formation time given by $t_F = E/m_T^2$.

improvement on the heavy flavor of AMPT

We take the charm quark from HIJING initial conditions with the formation time given by $t_F = E/m_T^2$.

We implement the Cronin effect on initial charm quarks

by broadening $C\overline{C}$ p_T with a random k_T sampled from Mangano et al. NPB (1993) \overrightarrow{Vogt} , PRC (2018, 2021)

$$f(\vec{k_{\rm T}}) = \frac{1}{\pi w^2} e^{-k_{\rm T}^2/w^2}$$

 $w = w_0 \sqrt{1 + (n_{\text{coll}} - i)\delta}$

grows with # of NN collisions of the wounded nucleon(s).

improvement on the heavy flavor of AMPT

We take the charm quark from HIJING initial conditions with the formation time given by $t_F = E/m_T^2$.

We implement the Cronin effect on initial charm quarks

by broadening $C\overline{C}$ p_T with a random k_T sampled from Mangano et al. NPB (1993) \overrightarrow{Vogt} , PRC (2018, 2021)

$$f(\vec{k_{\rm T}}) = rac{1}{\pi w^2} e^{-k_{\rm T}^2/w^2}$$

 $w = w_0 \sqrt{1 + (n_{coll} - i)\delta}$ grows with # of NN collisions of the wounded nucleon(s). The coalescence plus fragmentation mechanism Hendrik van Hees et al. PRC(2006) are frequently used in modeling the heavy quark hadronzation. M He et al. PRC(2012) We implement the fragmentation for heavy Cao et al. PRC(2015) quark hadronization in the AMPT model P coal. by utilizing the PYTHIA independent fragmentation. (a), $\sqrt{s_{NN}} = 5.02 \text{TeV}$ $C \rightarrow$ heavy hadron p-Pb p+pA simplified parameters controlled method is used 0.8 -3.5<y<-2.5 to select the hadronization process.

Relative distance: $d < p_r$,

Invariant mass:
$$m_{inv} < \sum m_Q + p_m (m_H - \sum m_Q).$$

Structure of improvedAMPT (String Melting version)

Possible solution of the R_{pA}/v_2 puzzle with the Cronin effect

We implement the Cronin effect on initial charm quarks by broadening $C\overline{C}$ p_T with a random k_T sampled from Mangano et al. NPB (1993) $f(\vec{k_T}) = \frac{1}{\pi w^2} e^{-k_T^2/w^2}$ Vogt, PRC (2018, 2021)

Full model, with Cronin effect at $\delta=5$, $\sigma_{LQ}=0.5$ mb (for scatterings among u/d/s quarks), $\sigma_{HQ}=1.5$ mb (for scatterings of charm quarks with other partons), can describe both R_{pA} and v_2 data of D^0 mesons

Possible solution of the R_{pA}/v_2 puzzle with the Cronin effect Without the Cronin effect (δ =0): if we get sizable v_2 , then

 D^0 R_{pA} is underestimated due to charm scatterings with the medium (via σ_{HQ}).

Black curve vs blue curve (*both at* $\sigma_{HQ}=1.5mb$): the Cronin effect significantly increases charm R_{pA} at moderate/high p_T but modestly decreases charm v_2

Effects from parton scatterings & Cronin effect

Test results for charm quarks:

- parton scatterings are mostly responsible for generating charm v₂
- the Cronin effect modestly decreases charm v₂

- parton scatterings significantly suppress charm spectra at moderate/high p_T
- the Cronin effect significantly increase charm spectra at moderate/high p_T

More on the Cronin effect

Often considered as transverse momentum broadening of a produced parton from a hard process due to multiple scatterings of initial parton(s) in the nucleus

Kopeliovich et al. PRL (2002) Kharzeev et al. PRD (2003) Vitev et al. PRD (2006) Accardi, hep-ph/0212148

• We take the k_T width as $w = w_0 \sqrt{1 + (n_{\text{coll}} - i)\delta}$

grows with *ncoll*: # of NN collisions of the wounded nucleon(s), *i*=1 for $C\overline{C}$ produced from the radiation of 1 wounded nucleon, =2 for $C\overline{C}$ produced from the collision of 2 wounded nucleons, This way, $w=w_0$ for pp collisions.

$$w_0 = (0.35 \text{ GeV}/c) \sqrt{b_{\rm L}^0 (2 + a_{\rm L}^0)/b_{\rm L}/(2 + a_{\rm L})} \propto K$$

motivated by $\kappa \propto \frac{1}{b_{\rm L}(2 + a_{\rm L})}$ for Lund string fragmentation.

More on the Cronin effect

Often considered as transverse momentum broadening of a produced parton from a hard process due to multiple scatterings of initial parton(s) in the nucleus

Kopeliovich et al. PRL (2002) Kharzeev et al. PRD (2003) Vitev et al. PRD (2006) Accardi, hep-ph/0212148

• We take the k_T width as $w = w_0 \sqrt{1 + (n_{coll} - i)\delta}$

grows with *ncoll*: # of NN collisions of the wounded nucleon(s), *i*=1 for $C\overline{C}$ produced from the radiation of 1 wounded nucleon, =2 for $C\overline{C}$ produced from the collision of 2 wounded nucleons, This way, $w=w_0$ for pp collisions.

$$w_0 = (0.35 \text{ GeV}/c) \sqrt{b_{\rm L}^0 (2 + a_{\rm L}^0)/b_{\rm L}/(2 + a_{\rm L})} \propto K$$

motivated by $\kappa \propto \frac{1}{b_{\rm L}(2+a_{\rm L})}$ for Lund string fragmentation.

• For comparison, $\langle k_T^2 \rangle$ (in GeV²) at 5.02TeV for minimum-bias collisions: Our value HVQMNR Vogt, PRC (2021) pp 0.04 1.46 p-Pb 3.27 2.50

Our extra broadening (p-Pb relative topp) is stronger than HVQMNR; further checks are needed (e.g.from J/ψ or Λ spectra).

The D^0 production at forward/backward rapidities

0

-4

dependence.

13

The D^0 production at different rapidity

 R_{pPb} (a) $D^0 + \overline{D}^0$, p-Pb **⊗**Full model $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ δ=0 w/o shadowing $p_{\tau} < 10 \text{ GeV}/c$ w/o shadowing(σ_{HO} =0mb) ✦LHCb Data 1.5 **ALICE** Data 0.5 (-20 2 4

Slightly overestimates production at midrapidity

underpredicts it in the forward region Shadowing: suppress the production at mid and forward rapidity.

Scattering: suppress the production at mid while enhance at far forward rapidity

no significant effect resulting from the Cronin The variation of momentum fraction x across different rapidity leads to the intersection. Local scaling for self-consistent size dependence in AMPT Lund symmetric string fragmentation function: $f(z) \propto z^{-1}(1-z)^{a_L}e^{-b_L m_T^2/z}$ b_L typical values (in 1/GeV²): ~ 0.58 (PYTHIA6.2), 0.9 (HIJING1.0), 0.7-0.9 (AMPT for pp)

 $b_L \sim 0.15$ is needed for string melting AMPT to describe the bulk matter at high energy AA collisions. This corresponds to a much higher string tension:

$$\langle p_T^{\mathsf{k}} \rangle \propto \kappa \propto \frac{1}{b_L(2+a_L)}$$

pp and AA collisions need different values of $\mathbf{b}_{\mathbf{L}}$; same for C. Z. et al. PRC (2019)

minijet cutoff \mathbf{p}_0 (for modern PDFs, is related to $Q_s \propto A^{1/6}$) Zheng et al. PRC (2020)

 \rightarrow We scale them with local nuclear thickness functions:

$$b_L(s_A, s_B, s) = \frac{b_L^{pp}}{[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\beta(s)}}$$

$$p_0(s_A, s_B, s) = p_0^{pp}(s)[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\alpha(s)}$$

C. Z. et al. PRC (2021)

We fit charged hadron $\langle p_T \rangle$ in *pp* to determine $b_L^{pp} = 0.7$, then used central AuAu/PbPb $\langle p_T \rangle$ data to determine $\alpha(s)$, $\beta(s)$ versus energy

ZWL, PRC (2014)

ZWL et al. PRC (2005)

Local scaling for self-consistent size dependence in AMPT The scaling allows AMPT to self-consistently describe the system size dependence,

including centrality dependences of AuAu & PbPb:

C. Z. et al. PRC (2021)

Centrality dependence of $< p_T >$ is now reasonable, while previous/public AMPT (v2.26t9) fails

The D_s^+ enhancement in high multiplicity p-Pb collisions

Adopting the scaling strategy to the strange quark production in the excited strings,

Black: applying local scaling
Red: not applying

We provide the first description of the D_s^+ enhancement in high multiplicity p-Pb collisions.

Summary

We have studied p-Pb collisions at LHC energies with an improved multi-phase transport model.

Including a strong Cronin effect allows a simultaneous description of the D^0 meson R_{pA} and v_2 data (at $p_T \le 8 \text{ GeV/c}$);

Parton scatterings significantly suppress charm spectra at moderate/ high p_T , Cronin effect significantly increases charm spectra at moderate/high p_T and thus compensates for the effect from parton scatterings

Charm v_2 is found to be mostly generated by charm quark scatterings, Cronin effect slightly decreases the charm quark or meson v_2

The improved AMPT model can adequately describe the D⁰ meson at larger rapidity and the D_s^+ enhancement at high multiplicity p-Pb collisions.

Backup Slides

More results on the D⁰ spectra

- The improved AMPT model can reasonably describe the D⁰ meson spectra at forward and backward rapidity at LHC.
- The Cronin strength need to be quantified in different rapidity

At 5.02 TeV, the full model also reasonably describes

 $D^0 p_T$ spectra (to ~8GeV/c)

Charged hadron p_T spectra (to ~1.5 GeV/c)

The full model at 8.16 TeV

at the same $\sigma_{LQ}=0.5$ mb or a smaller $\sigma_{LQ}=0.3$ mb (better reproduces Ks v₂):

This change of σ_{LQ} has little effect on D⁰ R_{pA} or v₂ :

