

Investigating the D meson production and elliptic flow in p-Pb collisions at LHC

Chao Zhang Wuhan University of Technology(WUT)

Collaborators: Liang Zheng, Shusu Shi, Zi-Wei Lin Based on 2210.07767 & 2403.06099

Spicy Gluons(胶麻) May 16-19, 2024, Hefei, Anhui, China. *1*

Outline

- The D^0 R_{pA} and v_2 puzzle
- Improvement on the multi-phase transport model
- Possible solution of the R_{pA}/v_2 puzzle with the Cronin effect
- D^0 and D_s^+ meson production at forward rapidities
- Summary

It has been a challenge to describe both data simultaneously:

- sizable $v_2 \rightarrow$ significant charm quark interaction with medium \rightarrow suppression of charm high p_T spectrum in pA and R_{pA} (above)
- Studies based on color glass condensate can describe D and J/ψ v₂, no RpA results yet. Cheng Zhang et al. PRL (2019), PRD (2020)

The D^0 R_{pA} and v_2 puzzle

• Without charm quark scatterings (below),

- This was seen in an earlier study:
 \sim no suppression in R_{pA}, then v₂ is too small. \sim no suppression in R_{pA} , Beraudo et al. JHEP (2016)
- A simultaneous description of the R_{pA} and v_2 data could disentangle different effects (*initial state correlations, cold nuclear, hot medium*) and help understand onset of collectivity & formation of parton matter or QGP

Improvement on the multi-phase transport model

We use a multi-phase transport (AMPT) model for this study.

It was constructed as a self-contained kinetic description of heavy ion collisions:

- evolves the system from initial condition to final observables;
- particle productions of all flavors from low to high p_T ;
- addresses non-equilibrium evolution/dynamics (*more important for smaller systems*).

improvement on the heavy flavor of AMPT

We take the charm quark from HIJING initial conditions with the formation time given by $t_F = E/m_T^2$.

improvement on the heavy flavor of AMPT

We take the charm quark from HIJING initial conditions with the formation time given by $t_F = E/m_T^2$.

We implement the Cronin effect on initial charm quarks

by broadening $c\bar{c}$ p_T with a random k_T sampled from Mangano et al. NPB (1993) Vogt, PRC (2018, 2021)

$$
f(\vec{k_{\rm T}}) = \frac{1}{\pi w^2} e^{-k_{\rm T}^2/w^2}
$$

 $w = w_0 \sqrt{1 + (n_{\text{coll}} - i)\delta}$

grows with $#$ of NN collisions of the wounded nucleon(s).

improvement on the heavy flavor of AMPT

We take the charm quark from HIJING initial conditions with the formation time given by $t_F = E/m_T^2$.

We implement the Cronin effect on initial charm quarks

by broadening $c\bar{c}$ p_T with a random k_T sampled from Mangano et al. NPB (1993) Vogt, PRC (2018, 2021)

$$
f(\vec{k_{\rm T}}) = \frac{1}{\pi w^2} e^{-k_{\rm T}^2/w^2}
$$

 $w = w_0 \sqrt{1 + (n_{\text{coll}} - i)\delta}$ grows with # of NN collisions of the wounded nucleon(s). The coalescence plus fragmentation mechanism Hendrik van Hees et al. PRC(2006) are frequently used in modeling the heavy quark hadronzation. M He et al. PRC(2012) We implement the fragmentation for heavy Cao et al. PRC(2015) quark hadronization in the AMPT model by utilizing the PYTHIA independent fragmentation. A simplified parameters controlled method is used to select the hadronization process. 0.8 1 coal. P(a), $\sqrt{s_{NN}} = 5.02 \text{TeV}$ $C \rightarrow$ heavy hadron $p + p$ *p*-Pb -3.5<*y*<-2.5

Relative distance: $d < p_r$,

Invariant mass: $m_{inv} < \sum m_Q + p_m(m_H - \sum m_Q)$.

Structure of **improved**AMPT (String Melting version)

Possible solution of the R_{pA}/v_2 puzzle with the Cronin effect

We implement the Cronin effect on initial charm quarks by broadening $\overline{c} \overline{c}$ p_T with a random k_T sampled from Mangano et al. NPB (1993) Vogt, PRC (2018, 2021) $f(\vec{k_{\rm T}}) = \frac{1}{\pi w^2} e^{-k_{\rm T}^2/w^2}$

Full model, with Cronin effect at $\delta = 5$, $\sigma_{LO} = 0.5$ mb (for scatterings among u/d/s quarks), $\sigma_{HO} = 1.5 \text{ mb}$ (for scatterings of charm quarks with other partons), can describe both R_{pA} and v_2 data of D^0 mesons

Possible solution of the R_{pA}/v_2 puzzle with the Cronin effect Without the Cronin effect $(\delta=0)$: if we get sizable v_2 , then

D⁰ R_{pA} is underestimated due to charm scatterings with the medium (via σ_{HQ}).

Black curve vs blue curve (*both at* $\sigma_{HQ} = 1.5mb$): the Cronin effect significantly increases charm R_{pA} at moderate/high p_T but modestly decreases charm v_2

Effects from parton scatterings & Cronin effect

Full model 8.16TeV, p+Pb collisions With $\sigma_{HO} = 0$ mb 0.15 Charm quark, -1.46<y <0.54 Test results for charm quarks: $\delta = 0$ 0.1 parton scatterings are mostly S^{α} responsible for generating charm v_2 0.05 • the Cronin effect modestly decreases charm v_2 $\overline{2}$ 6 p_{τ} (GeV/c) 1.8 With $\sigma_{HO} = 0$ mb 5.02TeV, p-Pb collisions parton scatterings significantly Charm quark, -0.96<y <0.04 $\delta = 0$ 1.6 suppress charm spectra at

moderate/high p_T

• the Cronin effect significantly increase $\frac{1}{\overline{e}}$

charm spectra at moderate/high p_T suppress charm spectra at 1.4 moderate/high p_T 1.2 charm spectra at moderate/high p_T 0.8 \mathcal{P} 6 Ω p_T (GeV/c)

More on the Cronin effect

Often considered as transverse momentum broadening of a produced parton from a hard process due to multiple scatterings of initial parton(s) in the nucleus

Kopeliovich et al. PRL (2002) Kharzeev et al. PRD (2003) Vitev et al. PRD (2006) Accardi, hep-ph/0212148

• We take the k_T width as $w = w_0 \sqrt{1 + (n_{\text{coll}} - i)\delta}$

grows with *ncoll*: # ofNN collisions ofthe wounded nucleon(s), $i=1$ for $c\bar{c}$ produced from the radiation of 1 wounded nucleon, $=$ 2 for $c\bar{c}$ produced from the collision of 2 wounded nucleons, This way, $w=w_0$ for pp collisions.

$$
w_0 = (0.35 \text{ GeV}/c) \sqrt{b_L^0 (2 + a_L^0)/b_L/(2 + a_L)} \quad \propto \quad \text{K}
$$

motivated by $\kappa \propto \frac{1}{b_L (2 + a_L^0)}$ for Lund string fragmentation.

More on the Cronin effect

Often considered as transverse momentum broadening of a produced parton from a hard process due to multiple scatterings of initial parton(s) in the nucleus

Kopeliovich et al. PRL (2002) Kharzeev et al. PRD (2003) Vitev et al. PRD (2006) Accardi, hep-ph/0212148

• We take the k_T width as $w = w_0 \sqrt{1 + (n_{\text{coll}} - i)\delta}$

grows with *ncoll*: # ofNN collisions ofthe wounded nucleon(s), $i=1$ for $c\bar{c}$ produced from the radiation of 1 wounded nucleon, $=$ 2 for $c\bar{c}$ produced from the collision of 2 wounded nucleons, This way, $w=w_0$ for pp collisions.

$$
w_0 = (0.35 \text{ GeV}/c) \sqrt{b_L^0 (2 + a_L^0)/b_L/(2 + a_L)} \propto K
$$

motivated by $\kappa \propto \frac{1}{b_1(2+a_1)}$ for Lund string fragmentation.

• For comparison, $\langle k_T^2 \rangle$ (in GeV²) at 5.02TeV for minimum-bias collisions: Our value HVQMNR Vogt, PRC (2021) *pp* 0.04 1.46 *p-Pb* 3.27 2.50

*Our extra broadening (p-Pb relative topp) is stronger than HVQMNR; further checks are needed (e.g.from J/*ψ *or* Λ *spectra).*

The D^0 production at forward/backward rapidities

A χ^2 fitting is used to extract the rapidity dependence.

13

The D^0 production at different rapidity

Slightly overestimates production at midrapidity

underpredicts it in the forward region Shadowing: suppress the production at mid and forward rapidity.

Scattering: suppress the production at mid while enhance at far forward rapidity

no significant effect resulting from the Cronin The variation of momentum fraction x across different rapidity leads to the intersection.

Local scaling for self-consistent size dependence in AMPT Lund symmetric string fragmentation function: $f(z) \propto z^{-1} (1-z)^{a_L} e^{-b_L m_T^2/z}$ b_L typical values (in $1/\text{GeV}^2$): ~ 0.58 (PYTHIA6.2), 0.9 (HIJING1.0), 0.7-0.9 (AMPT for pp)

 $b_L \sim 0.15$ is needed for string melting AMPT to describe the bulk matter at high energy AA collisions. This corresponds to a much higher string tension:

$$
\langle p_T^k \rangle \propto \kappa \propto \frac{1}{b_L(2 + a_L)}
$$

pp and AA collisions need different values of **bL**; same for C. Z. et al. PRC (2019) minijet cutoff \mathbf{p}_0 (*for modern PDFs, is related to* $Q_s \propto A^{1/6}$) Zheng et al. PRC (2020)

 \rightarrow We scale them with local nuclear thickness functions:

$$
b_L(s_A, s_B, s) = \frac{b_L^{pp}}{[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\beta(s)}} \qquad \text{C. Z. et al. PRC (2021)}
$$

$$
p_0(s_A, s_B, s) = p_0^{pp}(s)[\sqrt{T_A(s_A)T_B(s_B)}/T_p]^{\alpha(s)}
$$

We fit charged hadron $\langle p_T \rangle$ in *pp* to determine $b_L^{pp} = 0.7$, then used central AuAu/PbPb $\langle p_T \rangle$ data to determine $\alpha(s)$, $\beta(s)$ versus energy

ZWL et al. PRC (2005)

ZWL, PRC (2014)

Local scaling for self-consistent size dependence in AMPT The scaling allows AMPT to self-consistently describe the system size dependence,

> including centrality dependences C. Z. et al. PRC (2021) ofAuAu & PbPb:

Centrality dependence of $\langle p_T \rangle$ is now reasonable, while previous/public AMPT (v2.26t9) fails

The D_s^+ enhancement in high multiplicity p-Pb collisions

Adopting the scaling strategy to the strange quark production in the excited strings,

 \triangleright Black: applying local scaling \triangleright Red: not applying

We provide the first description of the D_s^+ enhancement in high multiplicity p-Pb collsions.

Summary

We have studied p-Pb collisions at LHC energies with an improved multi-phase transport model.

Including a strong Cronin effect allows a simultaneous description of the D^0 meson R_{pA} and v_2 data (at $p_T \leq 8$ GeV/c);

Parton scatterings significantly suppress charm spectra at moderate/ high p_T , Cronin effect significantly increases charm spectra at moderate/high p_T and thus compensates for the effect from parton scatterings

Charm v_2 is found to be mostly generated by charm quark scatterings, Cronin effect slightly decreases the charm quark or meson v_2

The improved AMPT model can adequately describe the $D⁰$ meson at larger rapidity and the D_s^+ enhancement at high multiplicity p-Pb collisions.

Backup Slides

More results on the D^0 spectra

- The improved AMPT model can reasonably describe the D^0 meson spectra at forward and backward rapidity at LHC.
- The Cronin strength need to be quantified in different rapidity

At 5.02 TeV, the full model also reasonably describes

 D^0 p_T spectra (to ~8GeV/c) Charged hadron p_T spectra (to ~1.5 GeV/c) 10^{-1} 10^2 D⁰, -0.96<y_{cm}<0.04 for pPb h[±], -0.3< η_{cm} <1.3 for pPb $\frac{dN}{d}dp \frac{dy}{dx}$ -0.5<y<0.5 for pp $dN/dp_{\rm T}$ dn 5.02TeV **ALICE AMPT** \bullet pPb pPb 10^{-5} 10^{-2} \circ pp pp $\overline{2}$ 6 0 0 p_T (GeV/c)

 $-0.8 < \eta < 0.8$ for pp

The full model at 8.16 TeV

at the same $\sigma_{\text{LQ}} = 0.5 \text{ mb}$ or a smaller $\sigma_{LQ} = 0.3 \text{ mb}$ (better reproduces $Ks v_2$):

This change of σ_{LO} has little effect on D^0 R_{pA} or v_2 :

