

Measuring QGP temperature with thermal dielectrons with STAR BES-II data

Zhen Wang (王 桢)

Shandong University

Spicy Gluons (胶麻) 2024

QCD phase diagram

Deconfined QCD matter produced at extreme high temperatures and/or baryon densities

Temperature, as one of key properties of medium, still poorly known

A "Little Bang" in heavy ion collisions

Deconfined QCD matter produced at extreme high temperatures and/or baryon densities

Temperature, as one of key properties of medium, still poorly known

Extract the information from the final detected particles

C.Shen https:// u.osu.edu/vishnu/2014/08/06/sketch-of-relativistic-heavy-ion- collisions

Electromagnetic Probes:

- ✓ Emitted from early stage to final stage
- \checkmark Minimal interaction with medium

Electromagnetic Probes:

- ✓ Emitted from early stage to final stage
- \checkmark Minimal interaction with medium

2024/5/17

p_T spectra

Zhen Wang, Spicy Gluons 2024

Thermal dileptons

Invariant mass spectra from thermal dileptons can reveal temperature of the hot medium at both QGP phase and hadronic phase

STAR experiment and eID

Time Projection Chamber

Time of Flight

Time Projection Chamber + Time of Flight

- ✓ Electron identification by dE/dx and velocity
- ✓ High purity electron samples

STAR BES-I Dielectron measurements

STAR: Phys.Rev.C 107 (2023) 6, L061901

Dielectron spectra

Zhen Wang, Spicy Gluons 2024

Excess yield

Excess dilepton spectra at LMR in 27 and 54.4 GeV Au+Au collisions and 17.3 GeV In+In collisions are similar

Temperature extraction from LMR

Low mass region:

(a*BW + b*M^{3/2}) * e^{-M/T}

- T is similar despite significant differences in collision energies and system sizes
- ✓ T extracted from low mass region is around the pseudo critical temperature T_{pc} (156 MeV)

Temperature extraction from IMR

Low mass region:

 $(a*BW + b*M^{3/2}) * e^{-M/T}$

- T is similar despite significant differences in collision energies and system sizes
- ✓ T extracted from low mass region is around the pseudo critical temperature T_{pc} (156 MeV)

Intermediate mass region :

 $M^{3/2} * e^{-M/T}$

- ✓ QGP thermal radiation is predicted to be the dominant source in the intermediate mass region
- ✓ T is higher than the pseudo critical temperature T_{pc} (156 MeV), supporting that the emission is predominantly from deconfined partonic phase

Temperature v.s. N_{part}

No clear centrality dependence in both mass regions

- ✓ Temperature from low mass region is around the pseudo critical temperature
- ✓ Temperature from intermediate mass region is higher than that in low mass region

Temperature v.s. μ_B

Dielectron measurements with STAR BES-II and FXT program

Summary

Low mass region:

- ✓ TLMR: 54.4 GeV: 172 ± 12 ±18 MeV 27 GeV: 167 ± 21 ± 28 MeV
- ✓ First experimental evidence that in-medium p is predominantly produced around phase transition

Intermediate mass region:

✓ TIMR :54.4 GeV : 303 ± 59 ± 28 MeV 27 GeV : 280 ± 64 ± 10 MeV

✓ First QGP temperature measurement at RHIC without distortion by medium flow ✓ T > T_{pc}, radiation source is predominantly QGP thermal radiation

Backup

Backup

