

TAR

Angular modulation of photon-induced J/ψ and lepton pairs in heavy ion collisions at STAR

Kaiyang Wang (王恺扬)

(kaiyangwang@mail.ustc.edu.cn)

2024. 5. 17

University of Science and Technology of China

- Introduction
- Angular modulation of photon-induced J/ψ in isobaric collisions
- Angular modulation of photon-induced lepton pairs
- Summary

Photon-induced process

- Equivalent Photon Approximation
- > Transverse EM fields can be quantized as

a flux of quasi-real photons

- > Flux of quasi-real photons $\propto Z^2$
- ➢ Photon induced process
 ✓ $\gamma + A \rightarrow J/\psi + A$ ✓ $\gamma + \gamma \rightarrow l^+ + l^-$
- ➢ Quantized photons are linearly polarized
 ➢ Linearly polarized photons → final state polarization

> The polarization of photons could be transferred to Vector Mesons (ρ^0 , J/ψ ...)

> Two sources for ρ^0 photo-production lead to final state interference effect

Spin interference effect

STAR

Birefringence of the QED vacuum

- ✓ Related to vacuum birefringence.
- ✓ Evidence of photon-photon interactions

- Sensitive to initial geometry
 - Comparison between Ru+Ru&Zr+Zr vs. Au+Au
- $\geq \cos 2\Delta \phi$ azimuthal asymmetry sensitive to daughter mass $\propto m^2/p_{\perp}^2$
 - Expected to be sizable for $\mu^+\mu^-$ pair production

The Solenoidal Tracker At RHIC (STAR)

BEMC: Particle identification, trigger

✓ TOF: Time of flight, particle identification

TPC: Tracking, momentum and dE/dx

Introduction

- Angular modulation of photon-induced J/ψ in isobaric collisions
- Angular modulation of photon-induced lepton pairs
- Summary

J/ψ measurements in 200 GeV isobaric UPCs

STAR

Collision species (taken in 2018)

- ${}^{96}_{44}Ru + {}^{96}_{44}Ru, \sqrt{s_{NN}} = 200 \text{ GeV}$
- ${}^{96}_{40}Zr + {}^{96}_{40}Zr, \sqrt{s_{\rm NN}} = 200 \,\,{\rm GeV}$

✓ Similar nuclear size

- → Measured $\gamma A \rightarrow J/\psi \rightarrow e^+e^-\& \gamma \gamma \rightarrow e^+e^-$ (in the mass continuum) within |y| < 1
- Signal extractions are performed via fitting to the $M_{ee} \& p_T$ distributions

MC input P. Wang et al 2022 Chinese Phys. C 46 074103 W. Zha et al Phys. Lett. B 800,135089 (2020)

J/ ψ interference signal extraction

$$\vec{l}^{\vec{l}} = \vec{l}^{\vec{l}} \Delta \phi = \phi_{\vec{l}^{+} + \vec{l}^{-}} - \phi_{\vec{l}^{+} - \vec{l}^{-}}$$

$$\vec{l}^{\vec{l}} - \vec{l}^{\vec{l}}$$

- ✓ Sizeable contributions from $\gamma\gamma \rightarrow e^+e^$ process
- ✓ Enhancement on left side of J/ψ peak → Bremsstrahlung & soft photon radiation

What contributes to interference background?

• $\gamma \gamma \rightarrow e^+ e^- \rightarrow$ Extrapolation from mass

$$A_2^{raw} = \frac{N_{J/\psi} \times A_2^{J/\psi} + N_{\gamma\gamma} \times A_2^{\gamma\gamma}}{N_{J/\psi} + N_{\gamma\gamma}}$$

$$A_2^{J/\psi} = \left(1 + \frac{N_{\gamma\gamma}}{N_{J/\psi}}\right) \times A_2^{raw} - \left(\frac{N_{\gamma\gamma}}{N_{J/\psi}}\right) \times A_2^{\gamma\gamma}$$

 $N_{\gamma\gamma} \& N_{J/\psi}$: From fitting of M_{ee} spectrum

 $A_2^{\gamma\gamma}$: Extrapolated from $M_{ee} \in [1.8, 2.6] \cup [3.2, 4.0] GeV/c^2$

p_T -dependent modulation of J/ ψ

✓ J/ ψ signal shows an increasing trend from negative to positive ➤ MC with soft photon radiation well describes increase trend @ $p_T > 0.1 \ GeV/c$ ➤ 2.4 σ lower than MC with zero modulation input @ $p_T < 0.06 \ GeV/c$

- Introduction
- Angular modulation of photon-induced J/ψ in isobaric collisions
- Angular modulation of photon-induced lepton pairs
- Summary

 $|A_{4\Delta\phi}|(\%)$ $|A_{2\Delta\phi}|(\%)$ χ^2/ndf Isobar(60-80%) 47 ± 13 6 ± 13 18/17Au+Au(60-80%) 27 ± 6 6 ± 6 10/17QED-EPA for Isobar400-

➤ Clear cos(4∆φ) signal (~3.6σ) in isobaric collisions: $|A_{4∆φ}| = 0.47\pm0.13(\text{stat})\pm0.05(\text{sys})$

W.M. Zha et al., Phys. Lett. B 800 (2020) 135089

➢ Hint of larger modulation in isobaric collisions than Au+Au collisions (0.27±0.06)
 → b dependence

Modulation of di-muon in Au+Au peripheral collisions

	Measured	χ^2/ndf	QED-EPA
$\left A_{4\Delta\phi}\right \left(\%\right)$	35 <u>+</u> 11	32/17	22
$\left A_{2\Delta\phi}\right \left(\%\right)$	20 <u>+</u> 9		13

> Observation of non-zero 4th-order azimuthal angular modulation of $\mu^+\mu^-$ pairs (3.3 σ).

First indication of non-zero the 2nd-order azimuthal angular modulation $(2.3\sigma)!$

STAR

Summary

- $> J/\psi \cos 2\Delta \phi$ modulation in isobaric UPC shows strong p_T dependence
 - \succ 2.4 σ negative modulation @ p_T < 0.06 GeV/c
- > Angular modulation of photon-induced lepton pairs in peripheral collisions
 - ➢ Hint of impact parameter dependence in isobar & Au+Au collisions
 - → Hint of non-zero cos2 $\Delta \phi$ modulation in $\gamma \gamma \rightarrow \mu^+ \mu^-$ in Au+Au peripheral collisions