

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三■ ���?

Open-charm production in pPb collisions with the LHCb experiment

Jianqiao Wang on behalf of the LHCb collaboration

Spicy Gluons 2024 workshop

May 21, 2024

3 Analysis strategy

4 Open-charm results with LHCb pPb data

- Prompt D^0 production in pPb at $\sqrt{s_{\rm NN}} = 8.16 \,{\rm TeV}$
- Prompt D^+ and D_s^+ production in pPb
- Prompt Ξ_c^+ production in *p*Pb at $\sqrt{s_{\rm NN}} = 8.16$ TeV

5 Summary and prospect

Charm quark in heavy-ion collisions

- Charm quarks are excellent probes in heavy-ion collisions
 - ▶ Large quark masses allow perturbative QCD calculation
 - ▶ Sensitive to the nuclear medium due to their long lifetime
- Related nuclear matter effects
 - ▶ Nuclear shadowing
 - Gluon saturation
 - Strangeness enhancement
 - ▶ Modification of baryon-to-meson ratio (fragmentation / coalescence)

LHCb detector in Run2

- Single-arm forward spectrometer, covering the pseudo-rapidity range of $2 < \eta < 5$
- Designed for studying particles containing b or c quarks
- $\bullet\,$ A general purposed detector collecting $pp/p{\rm Pb}/{\rm PbPb}$ data, providing unique fix-target mode at the LHC

• Provide excellent track finding, vertex reconstruction and particle identification (PID)

LHC
b $p{\rm Pb}$ data

 $\bullet\,$ Asymmetric *p*Pb data taken in 2013 and 2016, two collision configurations.

Ap: backward

- $\sqrt{s_{\rm NN}} = 5.02$ and $8.16 \,{\rm TeV}$
- Boosted in lab frame by 0.465
- Rapidity coverage:

 $pA: 1.5 < y^* < 4.0$ $Ap: -5.0 < y^* < -2.5$

Analysis strategy

• Double-differential cross-section:

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d} p_{\mathrm{T}} \mathrm{d} y^*} \equiv \frac{N}{\mathcal{L} \times \varepsilon_{\mathrm{tot}} \times \mathcal{B} \times \Delta p_{\mathrm{T}} \times \Delta y^*} \;,$$

- ▶ Prompt yield N and efficiency ε_{tot} to be determined
- \blacktriangleright Integrated luminosity ${\cal L}$ and branching fraction ${\cal B}$ already known
- Nuclear modification factor

$$R_{p\rm Pb}(p_{\rm T}, y^*) \equiv \frac{1}{A} \frac{{\rm d}^2 \sigma_{p\rm Pb}(p_{\rm T}, y^*)/{\rm d} p_{\rm T} {\rm d} y^*}{{\rm d}^2 \sigma_{pp}(p_{\rm T}, y^*)/{\rm d} p_{\rm T} {\rm d} y^*} ,$$

• Forward-backward production ratio:

$$R_{\rm FB} (p_{\rm T}, y^*) \equiv \frac{{\rm d}^2 \sigma_{\rm pPb}(p_{\rm T}, +|y^*|)/{\rm d} p_{\rm T} {\rm d} y^*}{{\rm d}^2 \sigma_{\rm Pbp}(p_{\rm T}, -|y^*|)/{\rm d} p_{\rm T} {\rm d} y^*}$$

.

Cross-section determination

- Production mechanisms different for charm and beauty quarks. Necessary to separate prompt and from-*b* charm hadrons
- Fit to impact parameter (IP) for prompt yield extraction $(\chi^2_{\rm IP} \sim {\rm IP}/\sigma_{\rm IP})$

• Efficiency $\varepsilon_{\rm tot}$ estimated with simulation samples

Prompt D^0 production

D^0 nuclear modification factor

Phys. Rev. Lett. 131 (2023) 102301

- pp reference obtained from interpolation on LHCb 5 TeV and 13 TeV D^0 results
- In general agreement with nPDF and CGC calculations

• More suppressed R_{pPb} at forward low p_T , possibly attributed to FCEL effects

• Discrepancy of $\sim 2.0-3.8\sigma$ in high $p_{\rm T}$ at backward, indicating additional initial / final-state effects

D^0 nuclear modification factor in (x, Q^2)

• The experimental proxies x_{exp} and Q_{exp}^2 used for comparing results in different energy and kinematic regions

$$x_{\exp} \equiv 2 \frac{\sqrt{p_{\mathrm{T}}^2(D^0) + M^2(D^0)}}{\sqrt{s_{\mathrm{NN}}}} e^{-y^*} \text{ and } Q_{\exp}^2 \equiv p_{\mathrm{T}}^2(D^0) + M^2(D^0)$$

• Consistency between LHCb results at 5.02 TeV and 8.16 TeV in (x, Q^2) space

• Stronger suppression than nPDF calculations in $x \sim 0.01$ at larger Q^2

Prompt D^+ and D_s^+ production

D^+ and D_s^+ nuclear modification factor

5TeV: JHEP 01 (2024) 070 8TeV: arXiv:2311.08490

• pp reference derived from LHCb 5 TeV and 13 TeV D^+ and D_s^+ results

- Significant suppression at forward due to modification of nPDFs
 - More suppressed $R_{pPb}(D^+)$ at backward rapidity than $R_{pPb}(D_s^+)$

12/18

D_s^+/D^+ production ratio in $p_{\rm T}$ and y^*

- Strangeness enhancement considered as an important QGP signature
- Possible strangeness enhancement seen in high multiplicity small-system collisions by ALICE Ω (Ξ)/ π and LHCb B_s^0/B^0

D_s^+/D^+ production ratio versus multiplicity at $8\,{\rm TeV}$

• $N_{\text{Tracks}}^{\text{PV}}$: number of (primary) tracks for PV reconstruction

- Increasing trend with multiplicity for D_s^+/D^+ ratio across all p_T intervals
- More pronounced strangeness enhancement at intermediate $p_{\rm T}$ (2< $p_{\rm T}$ <6 GeV/c) and in backward rapidity
- Indicate modification of charm quark hadronization in high multiplicity pPb

Prompt Ξ_c^+ production

<ロト <回ト < 目ト < 目ト < 目ト 三日 のの(~ 15/18

Ξ_c^+ forward-backward production ratio

Phys. Rev. C 109 (2024) 044901

- First measurement of Ξ_c^+ baryons in heavy-ion collisions, powerful probe of strangeness enhancement and hadronization
- Measured in the common integrated rapidity region $2.5 < |y^*| < 4.0$

• The suppression at forward well reproduced by nPDF models

Ξ_c^+/Λ_c^+ and Ξ_c^+/D^0 production ratio

- Similar final-state channels $\Xi_c^+[usc](\Lambda_c^+[udc]) \to pK^-\pi^+$ employed
- Production ratios multiplied by the branching fraction due to large $\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$ uncertainty

- No significant dependence on $p_{\rm T}$ of $R_{\Xi_c^+/\Lambda_c^+}$ and $R_{\Xi_c^+/D^0}$
- In agreement with HELAC-onia calculation incorporating EPPS16 nPDF

Summary and prospect

- Charm quarks are sensitive to nuclear matter effects in heavy-ion collisions, and the LHCb experiment has strong capabilities to studying them
 - Nuclear shadowing and forward-backward production asymmetry observed for all species of charm hadrons
 - ▶ Tension between prompt $D^0 R_{pPb}$ and nPDF predictions in high p_T at backward rapidity at 8.16 TeV
 - ▶ First observation of strangeness enhancement in charm quark production in small systems, suggesting the contribution from coalscence
 - ▶ First measurement of Ξ_c^+ baryons in *p*Pb, compared with D^0 and Λ_c^+ production
- Λ_c^+/D^0 , D^*/D^0 and charm hadron v_2 under progress, for a better understanding of hadronization in small systems
- Data samples with larger statistics and higher multiplicity available, thanks to Run3 data-taking and LHCb upgrade

Thanks

Backups

LHCb heavy-ion data

• LHCb beam configurations

• Data sets

• Kinematic coverage

LHCb detector at Run3

- Collision rate at 40 MHz
- Pile-up factor $\mu\approx 5$
- New tracking system:
 - Silicon upstream detector (UT)
 - Scintillating tracking fibre (SciFi)
- Full software trigger:
 - Remove L0 triggers
 - Read out the full detector at 40 MHz

D^0 forward-backward production ratio

• Forward-backward production ratio $R_{\rm FB}$ versus $p_{\rm T}$

- Significant production asymmetry at low $p_{\rm T}$
- Rising trend towards unity with increasing $p_{\rm T}$, higher than nPDF calculations

Prompt Ξ_c^+ production in *p*Pb at 8.16 TeV

- First measurement of Ξ_c^+ baryons in heavy-ion collisions, powerful probe of strangeness enhancement and hadronisation
- $\Xi_c^+[usc](\Lambda_c^+[udc]) \to pK^-\pi^+$ channels employed

• Comparison also made with D^0 results