

Femtoscopy analysis involving light nuclei at RHIC-STAR experiment

Ke Mi (米柯) Central China Normal University 2024/05/17

<u>Spicy Gluons 2024: Workshop for Young Scientists on the quark-gluon matter in extreme conditions</u> May 16-18, 2024, Hefei, China

- \Rightarrow Femtoscopy is inspired by Hanbury Brown and Twiss (HBT)
- interferometry, but different scale (~several fm)
 - \rightarrow Spatial and temporal extent of emission source
 - \rightarrow Final-state Interactions (Coulomb, Strong interaction)
 - \rightarrow Bound state

Nature 178 1046-1048(1956) ALICE Coll. Nature 588, 232–238 (2020)

Model

 $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^2$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum \vec{r} : relative distance

 \Rightarrow Femtoscopy is inspired by Hanbury Brown and Twiss (HBT)

- interferometry, but different scale (~several fm)
 - \rightarrow Spatial and temporal extent of emission source
 - \rightarrow Final-state Interactions (Coulomb, Strong interaction)
 - \rightarrow Bound state

<u>Experimental</u>

$$3\vec{r} = \frac{N_{same}(k^*)}{N_{mixed}(k^*)}$$

Nature 178 1046-1048(1956) ALICE Coll. Nature 588, 232–238 (2020)

Model

 $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum \vec{r} : relative distance

 \Rightarrow Femtoscopy is inspired by Hanbury Brown and Twiss (HBT)

- interferometry, but different scale (~several fm)
 - \rightarrow Spatial and temporal extent of emission source
 - \rightarrow Final-state Interactions (Coulomb, Strong interaction)
 - \rightarrow Bound state

Model

 $C(k^*) = \int S(\vec{r}) |\Psi(\vec{k}^*, \vec{r})|^2 d^3 \vec{r}$

 $S(\vec{r})$: Source function $\Psi(\vec{k}^*, \vec{r})$: Pair wave function $k^* = \frac{1}{2} |\vec{p}_a - \vec{p}_b|$, relative momentum \vec{r} : relative distance

 \Rightarrow Femtoscopy is inspired by Hanbury Brown and Twiss (HBT)

- interferometry, but different scale (~several fm)
 - \rightarrow Spatial and temporal extent of emission source
 - \rightarrow Final-state Interactions (Coulomb, Strong interaction)
 - \rightarrow Bound state

Femtoscopy – Lednicky-Lyuboshitz approach

\Rightarrow Formalism with Lednicky-Lyuboshitz (L-L) approach

- o Only consider s-wave
- o Smoothness approximation for source function
- Effective range expansion for $\Psi(r^*, k^*)$
- o Static and spherical Gaussian source assumed

<u>Experimental</u>

$N_{same}(k^*)$ $N_{mixed}(k^*)$

- $k^* = \frac{1}{2} |\vec{p}_a \vec{p}_b|$, relative momentum

R. Lednicky, et al, Sov. J. Nucl. Phys. 35 (1982) 770

Femtoscopy – Lednicky-Lyuboshitz approach

\Rightarrow Formalism with Lednicky-Lyuboshitz (L-L) approach

- o Only consider s-wave
- o Smoothness approximation for source function
- Effective range expansion for $\Psi(r^*, k^*)$
- o Static and spherical Gaussian source assumed

<u>Experimental</u>

$N_{same}(k^*)$ $N_{mixed}(k^*)$

- $k^* = \frac{1}{2} |\vec{p}_a \vec{p}_b|$, relative momentum

1. R_G: Spherical

Gaussian source size

- f₀: Scattering length
- d_0 : Effective range

R. Lednicky, et al, Sov. J. Nucl. Phys. 35 (1982) 770

Light Nuclei correlation

- Formation mechanism of light nuclei are under debate
 - \Rightarrow Coalescence : final-state interaction
 - \Rightarrow Thermal : produced directly from fireball

Coalescence

Direct production

J.Cleymans et al, Phys.Rev.C 74, 034903 (2006) K. Blum et al, Phys.Rev.C 99, 04491 (2019) St. Mrówczyński and P. Słoń, Acta Physica Polonica B 51, 1739 (2020) St. Mrówczyński and P. Słoń, Physical Review C 104, 024909 (2021)

Light Nuclei correlation

- Formation mechanism of light nuclei are under debate \Rightarrow Coalescence : final-state interaction
 - \Rightarrow Thermal : produced directly from fireball
- Role of Nucleon-Nucleon (N-N) and Hyperon-Nucleon (Y-N) interactions in the Equation-of-State \Rightarrow Inner structures of neutron star
- Indirect approach of three-body and four-body interactions

Coalescence

Direct production

Light Nuclei correlation

- Formation mechanism of light nuclei are under debate \Rightarrow Coalescence : final-state interaction
 - \Rightarrow Thermal : produced directly from fireball
- Role of Nucleon-Nucleon (N-N) and Hyperon-Nucleon (Y-N) interactions in the Equation-of-State \Rightarrow Inner structures of neutron star
- Indirect approach of three-body and four-body interactions

Large amount of light nuclei produced at 3 GeV, allowing precision measurements

In this talk: p-d, d-d, d- Λ correlation at 3 GeV in Au+Au collisions

Phys.Rev.C 99, 064905 (2019)

STAR Detector and Datasets

\Rightarrow Excellent Particle Identification

 \Rightarrow Large, Uniform Acceptance at mid-rapidity

17/05/2024

Particle Identification and Reconstruction

 \Rightarrow Reconstruct Λ candidates with KF-Particle package -> Improve significance

17/05/2024

 $\Rightarrow \pi^{-}$, p and d are identified by Time Projection Chamber (TPC) and Time-Of-Flight (TOF)

STAR. Phys. Lett. B 827 (2022) 136941

Results – Proton-Deuteron Femtoscopy

 \Rightarrow Clear depletion at small k^* range seen in data

 \Rightarrow Compared with SMASH + Correlation After burner (CRAB) model

- Two deuteron formation mechanism: Direct (hadronic scattering) vs. Coal (Wigner fund.) CF calculated with coalescence of deuterons is in better agreement with data

First measurement of p-d CF at STAR

arXiv:2208.05722 SMASH: J. Weil et al. Phys.Rev.C 94 (2016) 5, 054905 *Coalescence: W.Zhao et al. Phys. Rev. C.98 (2018) 5,054905*

Results – Deuteron-Deuteron Femtoscopy

 \Rightarrow Clear depletion at small k^* range seen in data

 \Rightarrow Compared with SMASH + Correlation After burner (CRAB) model

- Two deuteron formation mechanism: Direct (hadronic scattering) vs. Coal (Wigner fund.) CF calculated with coalescence of deuterons is in better agreement with data

First measurement of d-d CF at STAR

arXiv:2208.05722 SMASH: J. Weil et al. Phys.Rev.C 94 (2016) 5, 054905 *Coalescence: W.Zhao et al. Phys. Rev. C.98 (2018) 5,054905*

Results – Deuteron-Lambda Femtoscopy

 \Rightarrow Strong enhancements at small k^* range -> Attractive interactions

 \Rightarrow Simultaneously fit to data in different centralities with L-L approach

Consider two-spin component f_0 (D) = -20 $^{+3}_{-3}$ fm $f_0(Q) = 16^{+2}_{-1} \text{ fm}, d_0(Q) = 2^{+1}_{-1} \text{ fm}$

First measurement of d- Λ CF at STAR

nts: D (doublet, S = 1/2), Q (quartet, S=3/2)
n,
$$d_0$$
 (D) = 3 $^{+2}_{-1}$ fm
n, d_0 (O) = 2 $^{+1}_{-1}$ fm

* Λ feed-down correction not applied

Results – Deuteron-Lambda Femtoscopy

 \Rightarrow R_G: spherical Gaussian source extracted with L-L approach

 \Rightarrow Collision dynamics as expected

o Centrality dependence: $R_G^{central} > R_G^{peripheral}$

• $< m_T >$ dependence: $R_G(p - \Lambda) > R_G(d - \Lambda)$

 $p - \Lambda$ correlation at 3 GeV: backup

Results – **Deuteron-Lambda** Femtoscopy

17/05/2024

- \Rightarrow First experimental extraction of strong interaction parameters of d- Λ
- \Rightarrow Successfully separate two spin components in d- Λ
 - $f_0(D) = -20 \stackrel{+3}{_{-3}} \text{fm}, \ d_0(D) = 3 \stackrel{+2}{_{-1}} \text{fm}$ $f_0(Q) = 16^{+2}_{-1} \text{ fm}, d_0(Q) = 2^{+1}_{-1} \text{ fm}$
 - Negative f_0 in doublet state -> ${}^3_{\Lambda}$ H bound state
 - Positive f_0 in quartet state -> Attractive interaction

H. W. Hammer, Nucl. Phys. A 805 (2002) 173 Cobis, et al. J. Phys. G 23 (1997) 401 J. Haidenbauer, Phys. Rev. C 102 (2020) 3, 034001 *F. Wang, et al, Phys. Rev. Lett.* 83 (1999) 3138

M. Schafer, et al, Phys. Lett. B 808 (2020) 135614 *G. Alexander, et al. Phys. Rev.* 173 (1968) 1452 J. Haidenbauer, et al. Nucl. Phys. A 915 (2013) 24

Results $-\frac{3}{4}$ H **binding energy**

17/05/2024

 $p - \Lambda$ correlation at 3 GeV: <u>backup</u>

H.Bethe, Phys.Rev 76, 38 (1949)

Summary and Outlook

 \Rightarrow Femtoscopy measurements from heavy-ion collisions provides a unique tool to explore strong interactions and evolution dynamics \Rightarrow N-N interaction (p-d && d-d)

- First measurements of p-d and d-d correlation functions in STAR
- Deuterons are likely to be formed via Coalescence at 3 GeV

 \Rightarrow Y-N interaction (d- Λ)

- First measurements of d- Λ in heavy-ion collisions
- First experimental measurements of strong interaction parameters (f_0 , d_0) in two spin components • Provide a new way to constrain $^{3}_{\Lambda}H$ properties

More precise femtoscopy results with large statistics in BES-II program coming soon! (light nuclei, many body, exotica ...)

17/05/2024

Backup

$p-p, p-\Lambda$ correlation functions @ 3 GeV

