Nuclear structure effects on photoproduction in peripheral and ultraperipheral isobar collisions

Shuo Lin

Department of Modern Physics, University of Science and Technology of China

Based on:

S. Lin,R.J. Wang, J.F. Wang, H.J. Xu, S. Pu and Q. Wang, Phys.Rev.D 107 (2023), 054004 S. Lin,J.Y.Hu,H.J. Xu, S. Pu and Q. Wang, in preparation

Spicy Gluons 2024: Workshop for Young Scientists on the quark-gluon matter in extreme conditions

Outline

- ➢**Introduction & Motivation**
- ➢**Nuclear structure effects on photoproduction of di-electrons in peripheral isobar collisions**
- ➢**Nuclear deformation effects on photoproduction of ρ in ultraperipheral isobar collisions**

➢**Summary**

Strong EB fields in HIC

Schwinger Effect

J.S. Schwinger,Phys. Rev. 82 (1951) 664P. Copinger, K. Fukushima, and S. Pu, Phys. Rev. Lett. 121, 261602 (2018) P. Copinger and S. Pu, Int. J. Mod. Phys. A 35, 2030015 (2020)

Vacuum birefringence

……

• $eB \sim \gamma Z \alpha \nu / b_T^2 \sim 10^{18}$ Gauss

 $\sqrt{s_{NN}}$ = 200GeV Au+Au

S. L. Adler, Annals Phys. 67, 599 (1971).

Equivalent Photon Approximation

Ultra-relativistic charged particle can produce highly Lorentz contracted electromagnetic field

Equivalent Photon Approximation Classical $EM \Leftrightarrow Quasi-real photons$

Equivalent Photon Approximation

Due to the large flux of quasi-real photon,QED effects are enhanced by the Ze

$$
n(\omega) = \frac{4Z^2 \alpha_e}{\omega} \int \frac{d^2 k_{\perp}}{(2\pi)^2} k_{\perp}^2 \left[\frac{F(k_{\perp}^2 + \omega^2/\gamma^2)}{(k_{\perp}^2 + \omega^2/\gamma^2)} \right]^2
$$

Ultraperipheral Collisions(UPC)

UPC: the impact parameter is larger than 2 times the radius of a nucleus Clean background

Photoproduction in HIC

Isobar collisions

➢ The isobar collision was proposed to measure the chiral magnetic effect**.**

- Same background
- Different magnetic field
- => different CME signal

Isobar collisions

➢ Precision isobar data can be used to probe neutron skin thickness ,nuclear symmetry energy and nuclear deformation

Backgrounds are not identical!

Normal Nuclei

D

Neutron-Skin Nuclei core Skin п D

H.J. Xu, et.al., PRL121, 022301 (2018) H. Li, H.J. Xu et.al., PRC98, 054907(2018) C. Zhang, J. Jia, PRL128, 022301(2022) S. Zhao, H.J. Xu, et.al, PLB839, 137838 (2023)

……

Isobar collisions

➢ Can nuclear structure information be reflected in the photoproduction in isobar collision ?

Photoproduction of di-electrons in peripheral isobar collisions

Breit-Wheeler Process

In 1934 Breit and Wheeler

DECEMBER 15, 1934

PHYSICAL REVIEW

VOLUME 46

Collision of Two Light Quanta

G. BREIT* AND JOHN A. WHEELER,** Department of Physics, New York University (Received October 23, 1934)

Breit-Wheeler Process

 $\triangleright \gamma \gamma \rightarrow l^+l^-$ processes have been measured in UPC **STAR, J. Adam et al., Phys. Rev. Lett. 127, 052302 (2021), 1910.12400. ATLAS, G. Aad et al., Phys. Rev. C 104, 024906 (2021), 2011.12211. CMS, A. M. Sirunyan et al., Phys. Rev. Lett. 127, 122001 (2021), 2011.05239. ALICE, Abbas, E et al., Eur.Phys.J.C 73 (2013)11, 2617, 1305.1467.**

Scientists Generate Matter Directly From Light -Physics Phenomena Predicted More Than 80 Years Ago

nic Physics Brookhaven National Laboratory DOE Popular

Breit-Wheeler Process

 $\triangleright \gamma \gamma \rightarrow l^+l^-$ processes have also been measured in peripheral collisions ($b < 2R_A$ PC) **STAR, J. Adam et al., Phys. Rev. Lett. 121, 132301 (2018), 1806.02295. ATLAS, M. Aaboud et al., Phys. Rev. Lett. 121, 212301 (2018), 1806.08708. ALICE, Sebastian Lehner et al., PoS LHCP2019 (2019) 164, 1909.02508.**

Excess above hadronic production has been observed at low transverse momentum of dileptons (P_T^{ee})

Peripheral Collisions

R.J. Wang, S. Lin, S.Pu,Y.F. Zhang, Q. Wang,Phys.Rev.D 106 (2022) 3, 034025

- The linear polarization information of photons is important for understanding the azimuthal asymmetry of the lepton pair.
- The $cos2\varphi$ modulations of $\mu^+\mu^-$ are higher than $e^+e^$ case.

C. Li, J. Zhou, and Y.-J. Zhou, 1903.10084, 1911.00237.

Peripheral isobar collisions

$$
\sigma = \frac{Z^4 \beta^4}{2 \gamma^4 v^3} \int d^2 \mathbf{b}_T d^2 \mathbf{b}_{1T} d^2 \mathbf{b}_{2T} \int \frac{d \omega_1 d^2 \mathbf{p}_{1T}}{(2 \pi)^3} \frac{d \omega_2 d^2 \mathbf{p}_{2T}}{(2 \pi)^3} \quad \text{charge density distribution} \quad \longrightarrow F
$$
\n
$$
\times \int \frac{d^2 \mathbf{p}'_{1T}}{(2 \pi)^2} e^{-i \mathbf{b}_{1T} \cdot (\mathbf{p}'_{1T} - \mathbf{p}_{1T})} \frac{F^*(-\overline{p}'_1)}{-\overline{p}'_1^2} \frac{F(-\overline{p}_1^2)}{-\overline{p}_1^2} \quad \text{Mass density distribution} \quad \longrightarrow f
$$
\n
$$
\times \int \frac{d^2 \mathbf{p}'_{2T}}{(2 \pi)^2} e^{-i \mathbf{b}_{2T} \cdot (\mathbf{p}'_{2T} - \mathbf{p}_{2T})} \frac{F^*(-\overline{p}'_2)}{-\overline{p}'_2^2} \frac{F(-\overline{p}_2^2)}{-\overline{p}_2^2} \quad \text{Mass density distribution} \quad \longrightarrow f \quad b_{min} \quad d \quad b_T
$$
\n
$$
\times \int \frac{d^3 k_1}{(2 \pi)^3 2 E_{k_1}} \frac{d^3 k_2}{(2 \pi)^3 2 E_{k_2}} (2 \pi)^4 \delta^{(4)}(\overline{p}_1 + \overline{p}_2 - k_1 - k_2) \delta^{(2)}(\mathbf{b}_T - \mathbf{b}_{1T} + \mathbf{b}_{2T})
$$
\n
$$
\times \sum_{\text{spin of } l, \overline{l}} [u_{1\mu} u_{2\nu} L^{\mu\nu}(\overline{p}_1, \overline{p}_2; k_1, k_2)] [u_{1\sigma} u_{2\rho} L^{\sigma \rho *}(\overline{p}'_1, \overline{p}'_2; k_1, k_2)],
$$

The lepton pair photoproduction is calculated with the charge density distribution, while the centrality is defined from the Glauber model with the nuclear mass density.

Nuclear structure calculation by DFT

 \triangleright Nuclear charge density \neq Nuclear mass density

$$
\rho_i(\mathbf{r}) \equiv \frac{C_i}{1 + \exp[(|\mathbf{r}| - R_i)/d_i]}
$$

c: nuclear charge density n:nuclear mass density

S. Lin,R.J. Wang, J.F. Wang, H.J. Xu, S. Pu and Q. Wang, Phys.Rev.D 107 (2023), 054004.

Parameter setting

For comparison, we also use the charge density distribution as the mass density distribution to define the centrality

S. Lin,R.J. Wang, J.F. Wang, H.J. Xu, S. Pu and Q. Wang, Phys.Rev.D 107 (2023), 054004.

Numerical results

\triangleright P_T^{ee} distribution

S. Lin, R.J. Wang, J.F. Wang, H.J. Xu, S. Pu and Q. Wang, Phys.Rev.D 107 (2023), 054004.

Numerical results

➢ Azimuthal asymmetry

S. Lin,R.J. Wang, J.F. Wang, H.J. Xu, S. Pu and Q. Wang, Phys.Rev.D 107 (2023), 054004.

Numerical results

➢ Charge and centrality dependence

S. Lin,R.J. Wang, J.F. Wang, H.J. Xu, S. Pu and Q. Wang, Phys.Rev.D 107 (2023), 054004.

Photoproduction of ρ in ultraperipheral isobar collisions

 $\gamma+p/A \rightarrow V+p/A$

……

- ➢ parton structure
- Gluon saturation and small x physics

J. C. Collins, L. Frankfurt, M. Strikman, Phys. Rev. D 56, 2982 (1997).

J. Koempel, P. Kroll, A. Metz, and J. Zhou, Phys. Rev.D 85, 051502 (2012)

Y. Guo, X. Ji, and F. Yuan, (2023), 2308.13006.

S. J. Brodsky, L. Frankfurt, J. F. Gunion, A. H. Mueller,and M. Strikman, Phys. Rev. D 50, 3134 (1994).

A+A Collision

Interference effect

$$
\triangleright \rho^0 \to \pi^+ \pi^-
$$

 \triangleright Azimuthal asymmetries $cos(2\phi)$ in diffractive vector meson production in UPC

STAR: **Sci. Adv. 9, abq3903 (2023)**

Theory:

o Model I: **Zha, Brandenburg, Ruan, Tang, Xu, PRD 2021** o Model II: **Xing, Zhang, Zhou, Zhou, JHEP 2020**

J. D. Brandenburg, Z. Xu, W. Zha, C. Zhang, J. Zhou and Y.Zhou.Phys.Rev.D 106 (202 2) 7, 074008

Ultraperipheral isobar collisions

➢ Dipole model

$$
\mathcal{A} = 2i \int d^2 \mathbf{b}_T e^{i\mathbf{\Delta}_T \cdot \mathbf{b}_T} \int \frac{d^2 \mathbf{r}_T}{4\pi} \int_0^1 dz
$$

$$
\times \Psi^{\gamma \to q\bar{q}}(\mathbf{r}_T, z) N(\mathbf{r}_T, \mathbf{b}_T) \Psi^{V \to q\bar{q}*}(\mathbf{r}_T, z)
$$

➢ Dipole nucleus scattering amplitude parameterization

$$
N(b_{\perp},r_{\perp}) = 1 - \frac{1}{N_c} \left\langle \text{Tr} \left(U(b_{\perp} + r_{\perp}/2) U^{\dagger} (b_{\perp} - r_{\perp}/2) \right) \right\rangle
$$

$$
N(\mathbf{r}_T, \mathbf{b}_T) = 1 - \exp \left[-2\pi B_p A \mathbf{I}_A(\mathbf{b}_T) \mathbf{V}(\mathbf{r}_T) \right]
$$

Nuclear deformation

➢Ru deformed as an ellipsoid

Zr deformed as a pear

➢The Woods-Saxon distribution

$$
\rho(r,\theta,\phi) = \frac{\rho_0}{1 + \exp\{[r - R_0(\theta,\phi)]/a\}}
$$

 $R_0(\theta) = R[1 + \beta_2 Y_{2,0}(\theta) + \beta_3 Y_{3,0}(\theta) + ...]$

 β_2 :quadrupole deformation β_3 :octupole deformation

Nuclear deformation

➢Ru deformed as an ellipsoid

Zr deformed as a pear

 β_2 :quadrupole deformation β_3 :octupole deformation

The thickness function 2D plot

Compared to the experiment

 \triangleright We calculate the ratio of transverse momentum spectra of ρ^0 in isobar UPCs.(tip-tip collision, body-body collisions , deformation average, no deformation, respectively)

Phenomenological Explanation

➢Dipole-nucleus scattering amplitude approximation

 $N(\mathbf{r}_T, \mathbf{b}_T) = 1 - \exp[-2\pi B_p A T_A(\mathbf{b}_T) \mathcal{N}(\mathbf{r}_T)]$ $N(\mathbf{r}_T, \mathbf{b}_T) \simeq 2\pi B_p A T_A(\mathbf{b}_T) \mathcal{N}(\mathbf{r}_T)$

➢Thickness function approximated as Gaussian distribution $T_A(\mathbf{b}_T) \sim \exp\left(-\frac{\mathbf{b}_T^2}{w_m^2}\right)$ with ω_T being the nucleus width. \triangleright The dipole amplitude will be proportional to $e^{-\frac{1}{4}q_T^2 w_T^2}$ after the integration of b_T

$$
\mathcal{A} \sim A \int \frac{d^2 \mathbf{r}_T}{4\pi} \int_0^1 dz B_p \mathcal{N}(\mathbf{r}_T) \times \Psi^{\gamma \to q\bar{q}}(\mathbf{r}_T, z) \Psi^{\gamma \to q\bar{q}*}(\mathbf{r}_T, z) \times \int d^2 \mathbf{b}_T e^{i\mathbf{q}_T \cdot \mathbf{b}_T} \exp\left(-\frac{\mathbf{b}_T^2}{w_T^2}\right) \times A(q_T^2) \propto e^{-\frac{1}{4}q_T^2 w_T^2}
$$

Phenomenological Explanation

➢The ratio of the transverse momentum spectra is

proportional to
$$
e^{\delta \omega_T q_T^2}
$$
 with $\delta \omega_T = -\frac{1}{2} \times \left[(\omega_T^{Ru})^2 - (\omega_T^{Zr})^2 \right]$

 \triangleright No deformation \rightarrow slope \approx 0 Ru (body) $|Ru (tip) |Ru (spherical) |Zr (spherical)$ $\omega_T^{Ru}(tip) < \omega_T^{Zr} \to \text{slope} > 0$ 3.628 fm 3.372 fm 3.544 fm 3.571 fm w_{T} $\omega_T^{Ru}(body) > \omega_T^{Zr} \rightarrow \text{slope} < 0$

Compared to the experiment

The slope of the transverse momentum spectrum ratio is sensitive to nuclear deformation

Summary

➢Photoproduction of di-electrons in peripheral isobar collision

Nuclear charge density \neq Nuclear mass density

 \triangleright Photoproduction of ρ in ultraperipheral isobar collisions

Nuclear deformation

 \triangleright The photoproduction in isobar collisions may provide a new way to probe the nuclear structure

Thanks for your attention!