

Forward particle flow measurements in PbPb collisions at $\sqrt{s_{NN}}$ = 5.02 TeV with the LHCb detector

Zhengchen Lian(on behalf of the LHCb collaboration) Tsinghua University, Beijing, China

Spicy Gluons/Hefei, China

Introduction

The LHCb detector

- Forward 2D correlation functions
- Forward charged-hadron correlations in PbPb at 5 TeV
- Summary and outlook

Outline

Introduction

• Flow Harmonics (spatial anisotropy of final particles)

$$\frac{dN_{flow}}{d\Delta\phi} = \frac{N}{2\pi} \left[1 + 2\sum_{n=1}^{N} \frac{v_n \cos(n \cdot \Delta\phi)}{1 - 1} \right]$$

 v_1 : Directed flow. Deflection of the nuclear matter v_{2k} : Spatial anisotropy

Flow harmonics

 v_{2k+1} : Fluctuation of the Initial Geometry

- Evolution and the properties of the QGP
 - Thermalization process
 - Initial- and final-state effects
 - Transport properties (η/s)

Introduction

• Two-particle correlations in the forward region

- Observed quantity: $(\Delta \phi, \Delta \eta)$ of different particle pairs event by event
- Flow in the forward direction is heavily affected by "cooler" hadronic freezeout
 Phys. Rev. C90 (2014) 044904, arXiv:1407.8152.
- Test hydrodynamic and transport models with the non-equilibrium hadronic phase
- Complementary to other LHC results at central-pseudorapidity

The LHCb detector

• High-precision momentum measurement and vertex reconstruction

Analysis strategy

• 2D angular correlations with mixed-event corrections

- *C* : correlation function
- *S* : distribution of particle pairs from same-event Signal biased by detector effects
- *B* : distribution of particle pairs from mixed-event No flow in B because of the random reaction plane

In the ratio C, the acceptance effects largely cancel out and only the physical correlations remain

Analysis strategy

- 1D two-particle azimuthal ($\Delta \phi$) correlation
 - Remove $|\Delta \eta| \le 1$ region to reduce short-range nonflow contributions

$$C(\Delta \phi) = \frac{\int_{1}^{2.9} S(|\Delta \eta|, \Delta \phi) d(|\Delta \eta|)}{\int_{1}^{2.9} B(|\Delta \eta|, \Delta \phi) d(|\Delta \eta|)}$$

• Perform a Fourier series fit to this function including the the first three harmonic terms

$$C(\Delta\phi) = A\left[1 + 2\sum_{n=1}^{3} V_n(p_{T_a}, p_{T_b})\cos(n \cdot \Delta\phi)\right]$$

• Extract the n^{th} flow harmonic coefficient of particle as a function of transverse momentum $v_n(p_T)$

$$V_n(p_{T_a}, p_{T_b}) = v_n^a(p_{T_a}) \cdot v_n^b(p_{T_b})$$

Forward 2D correlation functions

Small system(pPb & Pbp)

Forward 2D correlation functions

- Large system(PbPb)
 - New peripheral PbPb results show stronger near-side range

Forward charged-hadron correlations in PbPb at 5 TeV

1D correlation functions

- Relative amplitude difference between the near- and away-side peaks at high p_T and in peripheral events
- Flow harmonic coefficients, $v_2(p_T)$ and $v_3(p_T)$ extracted from the Fourier series fits in different p_T ranges and centrality classes

Forward charged-hadron correlations in PbPb at 5 TeV

• First measurement of charged hadron $v_n(p_T)$ at LHCb

	Centrality class	Pseudorapidity	$\sim^{\circ} 0.3$ LHCb PbPb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ Centrality 65-75 %	Centrality 75-84 %
LHCb	65-75% 75-84%	$2 \le \eta \le 4.9$		
ALICE	60-70%	$ \eta < 0.8$		• LHCb $2 \le \eta \le 4.9 \ p \ge 2 \ \text{GeV}$ • ALICE $60-70\% \ \eta < 0.8$
ATLAS	60-70% 70-80%	$ \eta < 2.5$		♦ ATLAS 60-70% η < 2.5 • ATLAS 70-80% η < 2.5 • AMPT 2 ≤ η ≤ 4.9 p ≥ 2 GeV
AMPT	65-75% 75-84%	$2 \le \eta \le 4.9$		· · · · · · · · · · · · · · · · · · ·

- LHCb results in the forward region show weaker v_n compared to ALICE and ATLAS results
- Constrain the theoretical model

-0.1

-0.2

New

LHCb: arXiv:2311.09985

ALICE: JHEP (2018) 103

2

ATLAS: Eur. Phys. J. C78 (2018) 9

ech. 32 (2021) 113

PT: Z.-W. Lin and L. Zheng, N

6

8

 $p_{_{\rm T}}$ [GeV]

10

2

6

4

8

 $p_{_{\mathrm{T}}}$ [GeV]

10

Summary and outlook

- Two-particle angular correlation analysis
 - First measurement of charged hadron $v_n(p_T)$ at LHCb
 - Pronounced near-side ridges in PbPb than pPb → stronger forward particle flow
 - Generally smaller v2 and v3 values \leftarrow different η range
 - Constrain the theory models
 - Evolution of QGP
- More measurements in small systems with high statistics are in process

Thank you for attention!

Backup

- Extract $v_n(p_T)$ from parameters $V_n(p_{T_a}, p_{T_b})$
 - First measure tracks from the reference tracks only

$$V_n(p_{T_b}, p_{T_b}) = v_n^b(p_{T_b}) \cdot v_n^b(p_{T_b})$$

• Not apply to the first-order flow harmonic coefficient due to the long-range nonflow contributions

Backup

- Data selection
 - + 2018 PbPb at $\sqrt{s_{NN}}=5.02$ TeV , 3.33 billion events, $\mathcal{L}=213.7~\mu b^{-1}$

	centrality	65–100%
Event	num. of reconstructed PV	$nPV \ge 1$
	vertex	$0.758 < PV_x < 0.95 mm$
		For runNum< 218773, $0.08 < PV_y < 0.25 \text{ mm}$
		For runNum $\geq 218773, -0.01 < PV_y < 0.168 \text{ mm}$
		$-134.7 < PV_z < 140.1 \text{ mm}$
	bunch-bunch crossing	bunch crossing type= 3
	num. of back tracks	num. of back tracks ≥ 15
	SMOG contamination cut	$ m E_{cal} > 2.7 imes 10^2 \cdot nVeloCluster - 8 imes 10^5$
	remove ghost track	ghost track probability ≤ 0.2
	prompt particles	IP $\chi^2 \leq 9$
Single track	track type	track type=3 (long track) [default cut]
	$\operatorname{pseudorapidity}$	$2 \leq \eta \leq 4.9 \; [ext{implicit cut}]$
	associate p_T	$0.2 \leq p_{T,a} \leq 5 { m GeV}$
	full momentum	$p>2{ m GeV}[{ m implicit}{ m cut}]$
	Clone track	KL distance ≥ 5000 [default cut]

Backup

