

Elliptic anisotropy measurement of the $f_0(980)$ in pPb collisions and determination of its quark content by CMS

An Gu CMS-PAS-HIN-20-002

Huzhou University

May 18, 2024

An Gu CMS-PAS-HIN-20-002

Overview

- 1. Introduction and Physics Motivation
- 2. Data Analysis
- 3. v_2 Results and Systematic Uncertainties
- 4. Extraction of $n_{\rm q}$ for $f_0(980)$
- 5. Conclusion

Introduction and Physics Motivation: Exotic hadrons

Contraction of the second seco

Example of exotic hadron: tetra-quark

- Exotic hadrons: configurations other than the usual q ar q and q q q (ar q ar q ar q)

• $f_0(980)$: candidate exotic hadron first observed in $\pi\pi$ scattering experiments in the 1970's

S.D. Protopopescu, Phys. Rev. D 7 (1973) 1279;
B. Hyams, Nucl. Phys. B 64(1973) 134;
G. Grayer, Nucl. Phys. B 75 (1974) 189

D.V. Bugg, Phys. Rept. 397 (2004) 257;
E. Klempt and A. Zaitsev, Phys. Rept. 454 (2007) 1;
J.R. Pelaez, Phys. Rept. 658 (2016) 1

Introduction and Physics Motivation: Elliptic Flow v_2 and NCQ scaling

Azimuthal anisotropy:

$$\frac{\mathrm{d}N}{\mathrm{d}\phi} \propto 1 + 2\sum_{n=1}^{\infty} v_n \cos[n(\phi - \psi_n)], \quad (1)$$

Approximate number of consitutent quark (NCQ) scaling has been observed $v_n(p_T)/n_q = v_{n,q}(p_T/n_q)$ (2) $v_n(KE_T)/n_q = v_{n,q}(KE_T/n_q)$ (3)

Coalescence hadronization provides one possible mechanism: n_{α} guarks combine into a hadron with \sim equal momenta. $\frac{\mathrm{d}N_{\mathrm{h}}}{\mathrm{d}\phi}\propto \left(\frac{\mathrm{d}N_{\mathrm{q}}}{\mathrm{d}\phi}\right)^{n_{\mathrm{q}}}\propto$ $\left[1 + \sum 2v_{n,q}(p_{\mathrm{T}}^{q})\cos(n[\phi - \psi_{n}])\right]^{n_{\mathrm{q}}}$

• v_2 measurement of $f_0(980) \rightarrow n_q$

Data Analysis: Reconstruction of $f_0(980)$

- ▶ Dataset: pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV in high multiplicity events collected in 2016.
- ▶ Dominant decay channel: $f_0(980) \rightarrow \pi^+\pi^-$.
- No PID in this analysis; All charged tracks assumed to be pions
- Mass Spectrum: opposite sign pair $\pi^+\pi^-$ subtracted by same sign pair $\pi^+\pi^+$, $\pi^-\pi^-$

- Peak is modeled with Breit-Wigner function
- Residual background: 3rd order polynomial
- Fitting range: $0.8 < m_{\pi\pi} < 1.7 \ GeV/c^2$

Data Analysis: v_2 Extraction

- ▶ Yield of $f_0(980)$ extracted for different $\phi \psi_2$ ranges
- Event-plane reslution corrected

Non-flow subtraction

- Use published nonflow data of K⁰_s from low-multiplicity subtraction [10.1103/PhysRevLett.121.082301]
- ► Assume relative nonflow/flow to be as same as that of K⁰_s. Use absolute nonflow as a systematic. (infeasible to do f₀(980) low-multiplicity subtraction)

v_2^{sub} results and systematic uncertainties

- Systematic uncertainties of $f_0(980) v_2$
 - Mix-Event Correction
 - Track Selection
 - Event-plane Resolution
 - Signal Form
 - Residual Background Form
 - Fit Range
 - Nonflow Subtraction
- Systematic uncertainties of $f_0(980)$ n_q

Source	n uncertainty
Source	n _q uncertainty
Statistical	0.16
$f_0(980) v_2$ systematics	0.13
Non-flow effects on $v_2^{ m sub}$	0.04
NCQ-scaling fit parameters	0.02
NCQ-scaling functional form	0.04
NCQ-scaling using $p_{ m T}/n_{ m q}$	0.06

$n_{\rm q}$ extraction for $f_0(980)$

► NCQ scaling fit in
$$\frac{KE_{\rm T}}{n_{\rm q}}$$
:
 $\frac{KE_{\rm T}}{n_{\rm q}} \left(p_0 + p_1 \frac{KE_{\rm T}}{n_{\rm q}} \right) e^{-p_2 \frac{KE_{\rm T}}{n_{\rm q}}}$

$n_{\rm q}$ extraction for $f_0(980)$

- ► NCQ scaling fit in $\frac{KE_{\rm T}}{n_{\rm q}}$: $\frac{KE_{\rm T}}{n_{\rm q}} \left(p_0 + p_1 \frac{KE_{\rm T}}{n_{\rm q}} \right) e^{-p_2 \frac{KE_{\rm T}}{n_{\rm q}}}.$
- Qualitatively consistent with $n_q = 2$ for $f_0(980)$.

$n_{\rm q}$ extraction for $f_0(980)$

▶ NCQ scaling fit in $KE_{\rm T}/n_{\rm q}$:

$$\frac{KE_{\mathrm{T}}}{n_{\mathrm{q}}} \left(p_0 + p_1 \frac{KE_{\mathrm{T}}}{n_{\mathrm{q}}} \right) e^{-p_2 \frac{KE_{\mathrm{T}}}{n_{\mathrm{q}}}}.$$

• Qualitatively inconsistent with $n_q = 4$ for $f_0(980)$.

Significance to exclude $n_{\rm q}=4$ and $n_{\rm q}=3$ hypothesis

• $\chi^2 = (\vec{y} - \vec{f})^T (C_y + C_f)^{-1} (\vec{y} - \vec{f})$, with uncertainty covariance matrix.

• Measured $f_0(980)$ data log-likelihood ratio $-2\ln (L_{n_q=4}/L_{n_q=2})$, i.e. χ^2 difference

- Pseudo-experiment assuming $n_q = 4$ (yellow peak):
 - v_2^{sub} from NCQ-scaling curve $\times 4$; Smearing with uncertainty.
 - Same calculation of log-likelihood ratio as data ightarrow yellow peak ightarrow get significance

• Pseudo-experiment assuming $n_q = 2$ (green peak)

NCQ scaling measured up to $p_{\rm T}/n_{\rm q}\approx 3~{\rm GeV/c}$, so use $p_{\rm T}<10~{\rm GeV/c}$ for $n_{\rm q}=4$ case

NCQ scaling measured up to $p_{\rm T}/n_{\rm q}\approx 3~{\rm GeV/c}$, so use $p_{\rm T}<8~{\rm GeV/c}$ for $n_{\rm q}=3$ case

χ^2 scan to extract $n_{ m q}$

• $\chi^2 = (\vec{y} - \vec{f})^T (C_y + C_f)^{-1} (\vec{y} - \vec{f})$, with uncertainty covariance matrix.

- ▶ NCQ scaling is measured up to $p_T/n_q \sim 3 \text{ GeV}/c$, so we use $f_0(980)$ data within $p_T < 6 \text{ GeV}/c$. Extracted $n_q = 2.4 \pm 0.4$.
- Assuming NCQ scaling holds beyond $p_{\rm T}/n_{\rm q} \sim 3 \text{ GeV}/c$, then $n_{\rm q} = 2.10 \pm 0.24$ (2.07 ± 0.22) using data from $p_{\rm T} < 8$ (10) GeV/c.

Conclusion

- ▶ v_2 of $f_0(980)$ measured as a function of p_T up to 10 GeV/c
- Assuming NCQ scaling, n_q of $f_0(980)$ is consistent with 2.
- $n_q = 4$ (tetra-quark state or $K\bar{K}$ molecule) excluded with 7.7 σ .

>
$$n_{
m q} = 3$$
 (q $ar{
m q}g$ hybrid) excluded with 3.5 σ .

• Our data favor $q\bar{q}$ normal meson state for $f_0(980)$.

Back-up: Eventplane Reconstruction

- Event Plane: ψ_n = 1/n atan2 (∑_i w_isin(nφ_i), ∑_i w_icos(nφ_i)), ith-tower of forward hadron calorimeter (HF) (3 < |η| < 5); φ_i azimuthal angle, w_i transverse energy in each tower as weight
- Event Plane Recentering and Flattening
 - Recentering:

 $\psi_n = \frac{1}{n}atan2\left(\sum_i w_i sin(n\phi_i) - \left\langle\sum_i w_i sin(n\phi_i)\right\rangle, \sum_i w_i cos(n\phi_i) - \left\langle\sum_i w_i sin(n\phi_i)\right\rangle\right), <> \text{ indicates the average over all events in the same centrality class and vertex locations}$

• Flattening:

$$\psi_n = \psi'_n \left(1 + \sum_{j=1}^{j_{max}} \frac{2}{j_n} \left(-\langle \sin(jn\psi'_n) \rangle \cos(jn\psi'_n) + \langle \cos(jn\psi'_n) \rangle \sin(jn\psi'_n) \right) \right)$$

▶ HF calorimeter in the Pb-going direction for better resolution ($3 < \eta < 5$ for pPb beam, $-5 < \eta < -3$ for Pbp beam)

Pseudo-experiments to exclude $n_{\rm q} = 4$ hypothesis

• Observed: $-2\ln (L_{n_q=4}/L_{n_q=2})$: log-likelihood ratio , (χ^2 difference)

- Pseudo-experimental data:
 - $f_0(980) v_2^{sub}$ from NCQ-scaling curve for a given n_q hypothesis; Smearing with uncertainty.
 - Distribution (yellow peak) fit by a Gaussian
 - Significance extracted from the observed (red)

Systematic Uncertainties

- Systematic uncertainties of $f_0(980) v_2$
 - Mix-Event Correction
 - Applying mixevent $H_{OS,mixEvent}/H_{SS,mixEvent}$ on $H_{SS,singleEvent}$
 - Track Selection
 - loose and tight track selections
 - Track Efficiency
 - track efficiency correction decreased and increased by 2.4%
 - Event-plane Resolution
 - Error propagation of uncertainties in event-plane resolution
 - Signal Form
 - Breit-Wigner and relativistic Breit-Wigner
 - Residual Background Form
 - 2nd, 3rd (defatul), 4th, 5th-order polynomial
 - Fit Range
 - Variate $0.02GeV/c^2$ on each side
 - Nonflow Subtraction
 - $\blacksquare~{\rm K}^0_{\rm s}~\Delta v_2/v_2$ (default), ${\rm K}^0_{\rm s}~\Delta v_2$

- ▶ Systematic uncertainties of $f_0(980) n_q$
 - Statistical: error propagated from $f_0(980) v_2$ statistical uncertainties
 - $f_0(980) v_2$ systematics: error propagated from $f_0(980) v_2$ systematic (nonflow uncertainty not included)
 - Non-flow effects on $v_2^{
 m sub}$: error propagated from $f_0(980)$ v_2 nonflow systematic
 - NCQ-scaling fit parameters: $n_{
 m q}$ uncertainty due to fit parameter uncertainties
 - NCQ-scaling functional form: standard deviation of $n_{
 m q}$ with different fit function form
 - NCQ-scaling using $p_{
 m T}/n_{
 m q}$: $n_{
 m q}$ difference from using $v_2^{
 m sub}/n_{
 m q}$ vs. $KE_{
 m T}/n_{
 m q}$

NCQ scaling of v_2

▶ NCQ scaling fit in KE_T/n_q : $f(KE_T/n_q) = KE_T/n_q (p_0 + p_1KE_T/n_q) e^{-p_2KE_T/n_q}$.

• Qualitatively consistent with $n_q = 2$ for $f_0(980)$.